首页 > 广西 > 南宁市 > 六年级下数学,六年级数学下册

六年级下数学,六年级数学下册

来源:整理 时间:2024-02-18 10:35:02 编辑:好学习 手机版

本文目录一览

1,六年级数学下册

分给甲后剩下:(20-4)÷(1-2/3)=48个 这堆苹果有:(48+2)÷(1-2/7)=70个

六年级数学下册

2,六年级下数学

0.2×0.2=0.04(㎡)0.3×0.3=0.09(㎡)解:设要用x块砖。0.09x=0.04×360 x=14.4÷0.09 x=360答:要用360块砖。
0.2×0.2×360=14.4(㎡)0.3×0.3=0.09(㎡)14.4÷0.09=160(㎡)答:要用160块砖。
10吗
360*0.04=14.414.4/0.09=160
设x小时后 2(1-1/2x)=1-1/3x x=1.5
0.2*0.2*360=14.4(m2)14.4/(0.3*0.3)=160(块)

六年级下数学

3,六年级下册的数学课本有哪些内容要详细点

人教版小学数学六年级下册:本册教科书由负数、圆柱与圆锥、比例、统计、数学广角、整理与复习等六个单元组成。具体如下:六年下册 一、负数 (负数的认识、比较大小;负数在日常生活及数学中的应用) 二 、圆柱与圆锥 (圆柱和圆锥的认识、圆柱的表面积、圆柱的体积、圆锥的体积) 三、比例 (比例的意义、比例的基本性质、解比例;正反比例、正比例图像;比例尺、图形的放大和缩小;用比例解决问题;) ● 自行车里的数学 四、统计 (统计图的科学选择和使用) 五 、数学广角 (抽屉原理) ●节约用水 六、 整理与复习 1、数与代数 2、空间与图形 3、统计与概率 4、综合应用
1 负数 2 圆柱与圆锥 3 比例 自行车里的数学 4 统计 5 数学广角 节约用水 6 整理与复习(1)数与代数 (2)空间与图形 (3)统计与概率 (4)综合应用 邮票中的数学问题 求采纳 谢谢
1、叔叔与玉棼的年龄差:10×(5-1)=40岁 40÷(3-1)-10=10岁 再过10年叔叔的年龄正好是玉棼的3倍。 2、400÷4-43=57千米 客车每小时行57千米。
北师大版:1.圆柱与圆锥的相关知识。(重点章节) 包括:认识;圆柱表面积的求法;圆柱和圆锥的体积求法。2.比例的相关知识 包括:正比例与反比例(这个是重点中的重点,而且不太好理解),比例尺,图形的放大与缩小。3.其余都是总复习。人教版:1.2.都有,同时还有一章是“负数”的相关知识。然后是总复习。

六年级下册的数学课本有哪些内容要详细点

4,六年级下册 数学题

1. 圆锥的底面积是2.5平方米,体积是4.5立方米,高是多少米? 2. 一个圆柱的体积是5.4立方分米,已知高是3.6分米,它的底面积是多少? 3. 一个圆锥的体积是0.768立方分米,已知它的高是24厘米,它的底面积是多少?一、求下列圆柱体的体积: 底面半径2厘米, 高10厘米; 底面积4.5平方米 高3.6米; 底面直径3分米, 高4米; 底面周长 6.28米, 高3分米; 二、求下列圆锥体的体积: 底面半径3米, 高12米; 底面积是120平方厘米, 高8厘米; 底面直径8分米, 高1.5米; 底面周长25.12米, 高3分米; 三、求下列圆柱体的表面积: 底面半径是5分米,高20厘米; 底面圆的直径是16厘米,高3厘米; 底面圆的周长是12.56分米,高20厘米; 四、求下列圆柱体的侧面积: 底面半径是4分米,高21厘米; 底面直径是16厘米,高3厘米; 五、求下列各形体的体积: 圆柱体的底面周长18.84分米,高2米 ; 圆锥体的底面直径6米,高20分米; 圆锥体的底面面积12平方米,高2米,与它等底等高的圆柱体体积是多少? 体积是12.56立方米, 底面半径是2分米的圆锥体高是多少分米? 六、应用题的练习: 1、一段圆钢长1.8米,底面半径为5厘米,每立方分米重7.8千克.这段圆钢重多少千克? 2、一个铁皮圆柱体形的油桶,底面直径是6分米,高8分米,这个油桶能装油多少千克?(每立方分米油重0.82千克,得数保留整数) 3、挖一个圆柱体形的蓄水池,从里面量底面周长31.4米,深2.4米。在它的内壁与底面抹上水泥,抹水泥部分的面积是多少平方米?蓄水池能蓄水多少吨? (每立方米水重1吨) 4、一只玻璃缸,底面积15平方分米,水深15厘米,放进一块石头后水面升到18厘米,这块石头体积是多少? 5、一座装满玉米的圆柱体形的粮仓,从里面量底面周长31.4米,高6米.玉米每立方米重740千克,用车运走玉米的 ,还剩下多少吨? 6、一个圆锥形的铅锥,底面直径是8厘米,高7.5厘米,这个铅锥体积是多少? 7、一个圆锥形沙堆, 底面面积12平方米,高2米,每立方米沙重1.7吨,盖房用去这堆沙的 ,还剩下多少吨? 8、一个圆锥形谷堆, 底面周长18.84分米,高2米; 每立方米谷重550千克,这堆稻谷重多少千克? 9、一个圆锥形的漏斗,它的容积是94.2立方厘米,底面半径3厘米,求漏斗的高. 10、一堆圆锥形沙, 底面半径是3米,高15分米, 每立方米沙重1.5吨,这堆沙重多少吨? 11、一个长方体的长28分米,宽15分米,高12分米.现将它熔铸成底面面积是90平方分米的圆锥体,圆锥体的高是几分米? 12、一个圆柱体的表面积比侧面积大12.56平方米,高56分米,这个圆柱体的体积是多少? 13、一个会议大厅有6根同样的圆柱形木柱,每根高4米,底面周长是1.5分米.如果每千克油漆可以漆4.5平方米,漆这些木柱需要多少千克? 14、做一个圆柱形的无盖铁皮水桶,底面周长18.84分米,高8分米,至少需要多少平方分米的铁皮?
10个

5,人教版小学六年级下册数学有哪些内容

1 负数 2 圆柱与圆锥 3 比例 自行车里的数学 4 统计 5 数学广角 节约用水 6 整理与复习 (1)数与代数 (2)空间与图形 (3)统计与概率 (4)综合应用 邮票中的数学问题 具体内容可以去书店或者在“51家教网www.51jjcn.cn/book_mulu7021.asp”上找
第一单元 圆柱和圆锥一、教材分析 本单元是在学习了长方体和立方体的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都比较高,因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。 教材在编写上遵循了“特征—表面—体”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。 本单元在教学方法上的一个显著特点是让学生积极、主动地实践探究,要让学生合作探究的过程中自主发现规律,获取知识,提高研究问题和解决问题的能力。二、教学目标 1、认识圆柱和圆锥 ,掌握圆柱和圆锥特征,知道圆柱和圆锥各部分的名称。 2、掌握圆柱的侧面积、表面积、体积和圆锥体积的计算方法,并能正确地进行计算。 3、通过观察、比较、操作、实验等实践活动,培养学生获取知识和解决问题的能力,体验知识的获得过程,感受事物间的联系。 4、结合教学内容培养学生认真、仔细、负责的精神和良好的学习习惯。三、教学重点和难点 1、重点:圆柱和圆锥的特征及体积、表面积的计算;等底等高的圆柱和圆锥体积之间的关系。 2、难点:解决实际问题中的表面积和体积的和区分 第二单元教材分析 教学目标:1、 初步了解统计的简单知识,能看懂并会分析统计的数据,学会绘制简单的统计表,在教师的指导下绘制简单的统计图。2、 根据有关数据统计资料的分析,受到一定程度的国情教育和爱国主义教育。 教学重点: 绘制统计表是本单元教材的重点。 教学难点:1、 复式统计表因为涉及的数量关系比较复杂,分类整理,确定栏别都是难点。2、 统计图因为类别多,制图复杂,纵轴、横轴上的数位难以确定,是本单元的难点。 第三单元教材分析 教学目标:1、 理解比的意义和性质,能正确地求出比值和化简比;2、 能够应用比的意义,求出平面图的比例尺,并能根据比例尺求图上距离或实际距离;3、 理解比例怕意义和比例的基本性质,能正确地解比例;4、 理解正、反比例的意义,能够正确判断成正、反比例的量;5、 能应用比例,正、反比例的意义,解答有关应用题。 教学重、难点:1、 本单元的重点是理解和掌握比的意义,正反比例的意义;2、 本单元的教学难点是关于正反比例的判定。 第四单元教材分析 教学目标: 1、使学生比较系统地掌握有关整数、小数、分数、百分数、比和比例、简易方程等基础知识,能够正确地进行整数、小数和分数的四则运算,会解简易方程,进一步提高计算能力。 2、掌握常见的一些数量关系和解答应用题的方法,能够独立解答稍复杂的应用题,进一步提高学生用算术方法和列方程解答应用题的能力。 3、掌握几何初步知识,能够计算一些几何形体的周长、面积和体积,发展学生的空间观念。 4、掌握统计的一些初步知识,能够绘制简单的统计表。 5、培养学生的逻辑思维能力和解决实际问题的能力。 复习重点:1、整数、小数、分数的四则混合运算;2、分数、百分数应用题;3、几何初步知识。 详细可登陆以下网址:http://www.360doc.com/content/10/1009/22/1705697_59718511.shtml
1 负数2 百分数(三)百※生活与百分数3 圆柱与圆锥4 比例※自行车里度的数学问5 数学广角——鸽巢问题6 整理和复习(答1)数专与代数(2)图形与几何(3)统计与概属率(4)数学思考(5)综合与实践

6,小学六年级下册的数学公式小学全部的人教版

1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1= 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)立方图形 名称 符号 面积S和体积V 正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 h-高 V=Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3 拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高 V=h(S1+S2+4S0)/6 圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V=S底h =πr2h 空心圆柱 R-外圆半径 r-内圆半径 h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 圆台 r-上底半径 R-下底半径 h-高 V=πh(R2+Rr+r2)/3 球 r-半径 d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 长*宽*高 底面积*高 底面积*高/3 边长的立方
正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 h-高 V=Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3 拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高 V=h(S1+S2+4S0)/6 圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V=S底h =πr2h 空心圆柱 R-外圆半径 r-内圆半径 h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 圆台 r-上底半径 R-下底半径 h-高 V=πh(R2+Rr+r2)/3 球 r-半径 d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 长*宽*高 底面积*高 底面积*高/3 边长的立方
立方图形 名称 符号 面积S和体积V 正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 h-高 V=Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3 拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高 V=h(S1+S2+4S0)/6 圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V=S底h =πr2h 空心圆柱 R-外圆半径 r-内圆半径 h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 圆台 r-上底半径 R-下底半径 h-高 V=πh(R2+Rr+r2)/3 球 r-半径 d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 长*宽*高 底面积*高 底面积*高/3 边长的立方 好好复习吧,祝你毕业考出好成绩! 。
人教版小学数学 定义定理公式 三角形的面积=底×高÷2。 公式 s= a×h÷2 正方形的面积=边长×边长 公式 s= a×a 长方形的面积=长×宽 公式 s= a×b 平行四边形的面积=底×高 公式 s= a×h 梯形的面积=(上底+下底)×高÷2 公式 s=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高 公式:v=abh 长方体(或正方体)的体积=底面积×高 公式:v=abh 正方体的体积=棱长×棱长×棱长 公式:v=aaa 圆的周长=直径×π 公式:l=πd=2πr 圆的面积=半径×半径×π 公式:s=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:s=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:v=sh 圆锥的体积=1/3底面×积高。公式:v=1/3sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 单位换算 (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 (2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 (4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤 (5)1公顷=10000平方米 1亩=666.666平方米 (6)1升=1立方分米=1000毫升 1毫升=1立方厘米 数量关系计算公式方面 1.单价×数量=总价 2.单产量×数量=总产量 3.速度×时间=路程 4.工效×时间=工作总量 小学数学定义定理公式(二) 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:x分之y=k(一定) 如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),反比例关系可以用下面的式子表示:x乘以y=k(一定) 1 、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 、加数+加数=和 和-一个加数=另一个加数 7 、被减数-减数=差 被减数-差=减数 差+减数=被减数 8 、因数×因数=积 积÷一个因数=另一个因数 9 、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 1 、正方形 C周长 S面积 a边长 周长=边长× 4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 、平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 、 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8、 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 、圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
圆柱侧面积=底面周长*高圆柱表面积=两个底面积+侧面积圆柱体积=底面积*高圆锥体积=等底等高的圆柱体积*1/3正比例:总量÷数量=单价(商)(一定)正比例要用除法算反比例:速度*时间=路程(积)(一定)反比例要用乘法算正反比例相同点:1、两个量相关联2、一个量随着另一个量的变化而变化不同点:正比例:两种量变化方向一致,商一定反比例:两种量变化方向相反,积一定
文章TAG:六年级下数学六年级数学下册

最近更新

  • 徐霞客的探险故事,用一句话概括徐霞客探险的内容

    用一句话概括徐霞客探险的内容《徐霞客游记》是中国最早的一部详细记录所经地理环境的游记,也是世界上最早记述岩溶地貌并详细考证其成因的书籍。2,徐霞客的奇事又哪些有一次,他去黄山考察, ......

    南宁市 日期:2023-05-06

  • 怎样写信的格式,亲爱的一封信四个汉字!

    (写在两个空格内)正文(写在顶部空格内)这种称呼或问候(写在两个空格内)在右下角写上你的名字和日期例如:亲爱的XXX:你好,写信of格式:(顶框)亲爱的(或心爱的)XXX:(空白两 ......

    南宁市 日期:2023-05-06

  • 故乡的食物,家乡的美食作文600字南安板鸭

    家乡的美食作文600字南安板鸭我出生在湖北省襄阳市,那是一个依山傍水的美丽的古城。今天,我来为大家介绍一下家乡的美食——豆腐面。豆腐面十里飘香,走在大街上,一闻到豆腐面的香气就不由 ......

    南宁市 日期:2023-05-06

  • 哪吒的师傅是谁,哪吒的师傅是谁

    本文目录一览1,哪吒的师傅是谁2,哪吒的师傅是谁呢3,封神演义哪吒的师傅又是谁呢4,哪吒的师傅叫什么5,哪吒师傅是谁1,哪吒的师傅是谁哪吒的师傅是太乙真人太乙真人太已真人,{0}2 ......

    南宁市 日期:2023-05-06

  • 李亨,李亨即位为唐肃宗李亨

    李亨最初被封为陕西王,开元十五年(727)迁为忠君,唐玄宗逃往西方,国家一日不能无君,于是李亨即位,2.李亨原本被封为忠君,但直到原太子被废,才被立为皇太子,而李亨和李亨的生母是窦 ......

    南宁市 日期:2023-05-06

  • 阳朔山水甲桂林,桂林山水甲天下阳朔山水甲桂林什么意思

    本文目录一览1,桂林山水甲天下阳朔山水甲桂林什么意思2,桂林山水甲天下阳朔山水甲桂林的意思3,桂林山水甲天下阳朔山水甲桂林是什么意思4,阳朔山水甲桂林前句是什么5,桂林山水甲天下阳 ......

    南宁市 日期:2023-05-06

  • 卢旺达大饭店,卢旺达饭店"改编电影适合人群

    剧情简介1994卢旺达宣布独立后,胡图族和图西族部落之间发生多次冲突,战争持续不断,在这样的背景下,卢旺达饭店管理者保罗一直在四处奔走,最终成功解救了饭店中的1000多名图西族和胡 ......

    南宁市 日期:2023-05-06

  • 什么是机械表,什么是机械手表

    什么是机械手表机械表的叫法是相对于电子石英表叫的,指的是一弹簧发条蓄能为动力,以齿轮传动方式运作,指针表示时间的计时钟表,真心再帮你期待采纳,手表基本可以分成两大类:一类是电子手表 ......

    南宁市 日期:2023-05-06