首页 > 浙江 > 湖州市 > 小学数学知识点总结,关于小学数学的知识

小学数学知识点总结,关于小学数学的知识

来源:整理 时间:2023-01-05 20:30:50 编辑:好学习 手机版

本文目录一览

1,关于小学数学的知识

1、加法:把两个数合并成一个数的运算。 2、减法:已知两个数的和与其中一个加数,求另一个加数的运算。 3、乘法:求相同加数和的简便计算。 4、除法:已知两个因数的积和其中一个因数,求另一个因数的运算。 小数四则运算的运算顺序和整数四则运算顺序相同。 分数四则运算的运算顺序和整数四则运算顺序相同。 记忆中好像就怎么点吧,对的吧

关于小学数学的知识

2,小学数学1至6年级知识整理

小学一年级 九九乘法口诀表。学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。 小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。 小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。 小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。
加法交换率:a+b=b+a 加法结合率:a+b+c=a+(b+c) 乘法结合率:a×b×c=a×(b×c) 乘法交换率:a×b×c=a×c×b 乘法分配率:(a+b)×c=a×c+b×c
加法交换率:a+b=b+a 加法结合率:a+b+c=a+(b+c) 减法性质:a-b-c=a-(b+c)

小学数学1至6年级知识整理

3,小学数学主要掌握哪些重点知识

小学数学毕业总复习无论是对学生掌握数学知识的水平层次,还是对教师全面提高教学效益都有着举足轻重的意义和作用。为切实抓好总复习工作,全面提高六年级教学质量,特拟订以下复习计划,供大家参考。 一、复习目标: 1、使学生比较系统的牢固的掌握有关整数、小数、分数、比和比例、简易方程等基础知识,具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活的进行计算,会解简易方程,养成检查和验算的习惯。 2、使学生巩固已获得的一些计量单位的大小的表象,牢固的掌握所学的单位间的进率,能够比较熟练的进行名数的简单改写。 3、使学生牢固的掌握所学的几何形体的特征,能够比较熟练的计算一些几何形体的周长、面积和体积,巩固所学的画图、测量等技能。 4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。 5、使学生牢固的掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活的运用所学知识独立的解答不复杂的应用题和生活中的一些简单的实际问题。 二、复习重点: ⒈整、小、分数四则运算,混合运算和简算,解方程和解比例。 ⒉复合应用题、分数、百分数应用题。 ⒊几何形体知识。 ⒋综合运用知识,解决实际问题。 三、复习难点: ⒈使学生对所学基础知识┄概念、性质、法则、公式以及常见数量关系系统化,并能融会贯通。 ⒉灵活解答应用题的能力和方法。 ⒊准确的进行计算。 四、复习关键: 掌握“双基”,并能灵活运用。 五、复习方法: ⒈分阶段复习 ⑴系统复习,24课时左右。 ⑵专题复习,12课时左右。 ⑶综合检测,查漏补缺,根据具体情况而定。 ⒉复习主要采用讲练结合,以练为主的方法进行。 六、复习时间安排: 第一阶段——24课时左右 ⒈数和数的运算(6课时) 这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。 ⑴、数的意义、数的读法和写法 ⑵、数的改写、数的大小比较 ⑶、数的整除、分数小数的基本性质 ⑷、四则运算的意义和法则 ⑸、运算定律和简便算法 ⑹、四则混合运算 ⒉代数的初步知识(3课时左右) 本节重点内容应放在掌握简易方程及比和比例的 辨析。 ⑴、用字母表示数 ⑵、简易方程 ⑶、比和比例 ⒊应用题(7课时左右) 这节重点放在应用题的分析和解题技能的发展上,难点内容是分数应用题。 ⑴、简单应用题(1课时) ⑵、复合应用题(2课时) ⑶、列方程解应用题(2课时) ⑷、用比例知识解应用题(2课时) ⒋、量的计量(2课时左右) 本节重点放在名数的改写和实际观念上。 ⑴、长度、面积、体积、重量、时间单位 ⑵、名数的改写 ⒌、几何初步知识(5课时左右) 本节重点放在对特征的辨析和对公式的应用上。 ⑴、平面图形的认识 ⑵、平面图形的周长和面积 ⑶、立体图形的认识 ⑷、立体图形的面积和体积 ⒍、简单的统计(2课时左右) 本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。 ⑴、平均数 ⑵、统计表 ⑶、统计图 注:在复习第一阶段中,需要穿插4份综合练习。 第二阶段:专题 复习训练(12课时左右) ⒈ 四则混合运算、简算、解方程、解比例的强化训练。 ⒉几何形体公式的实际综合应用。 ⒊各类应用题的训练。 ⒋填空题和判断题的强化。 第三阶段——根据具体情况而定。 综合练习和评讲,及时查漏补缺。 七、复习中的注意点: 1、注意启发,引导学生进行进行合理的整理和复习。 2、注重“双基”训练,夯实知识功底。 3、以教材为本,扣紧大纲。 4、加强反馈,注意因材施教。 5、力求作到上不封顶,下要保底。 八、总复习复习措施: 1、在复习分块章节时,重视基础知识的复习,加强知识之间的联系,使学生在理解上进行记忆。比如:基础概念、法则、性质、公式这类。在课堂上在系统复习中纠正学生的错误,同时防止学生机械的背诵;对于计量单位要求学生在记忆时,理顺关系。 2、在复习基础知识的同时,紧抓学生的能力。 ⑴、在四则混合运算方面,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用自习与课后辅导时间对学生进行多次的过关练习。 ⑵、在量的计量和几何初步知识上,多利用实物的直观性培养学生的空间想象能力,利用习题内型的衍射性指导学生学习。 ⑶、应用题中着重训练学生的审题,分析数量关系,寻求合理的简便的方法,讲练结合,归纳总结,抓订正、抓落实。 3、在复习过程中注意启发,加强导优辅差。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。要做到突出尖子生,重视学困生,努力提高中等生。 4、在复习期间,引导学生主动自觉的复习,学习系统化的归纳整理,对于学生多采用鼓励的方法,调动学习的积极性。 5、加强审题训练,提高解题能力。在复习时,教师应切实加强学生认真读题,审题习惯的培养。让学生在读题时读清、读透。 6、在复习当中,对于学生的掌握情况要及时做到心中有数,认真与学生进行反馈交流。以达到预期的复习目标。

小学数学主要掌握哪些重点知识

4,人教版小学数学五年级上册知识点有哪些

小学五年级数学上册复习教学知识点归纳总结第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.如:1.5×0.8就是求1.5的十分之八是多少.1.5×1.8就是求1.5的1.8倍是多少.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小.4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.6、(P11)小数四则运算顺序跟整数是一样的.7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.注意:如果被除数的位数不够,在被除数的末尾用0补足.11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数. 循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.第三单元观察物体15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.第四单元简易方程16、(P45)在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写.加号、减号除号以及数与数之间的乘号不能省略.17、a×a可以写作a?a或a ,a 读作a的平方. 2a表示a+a18、方程:含有未知数的等式称为方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫做解方程.19、解方程原理:天平平衡.等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商21、所有的方程都是等式,但等式不一定都是等式.22、方程的检验过程:方程左边=…… 23、方程的解是一个数; 解方程式一个计算过程.=方程右边 所以,X=…是方程的解.第五单元多边形的面积23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a面积=边长×边长 字母公式:S=a平行四边形的面积=底×高 字母公式: S=ah三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高. 因为平行四边形面积=底×高,所以三角形面积=底×高÷226、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书两个完全一样的梯形可以拼成一个平行四边形, 知道就行.平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷228、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍.29、长方形框架拉成平行四边形,周长不变,面积变小.30、组合图形:转化成已学的简单图形,通过加、减进行计算.第六单元统计与可能性31、平均数=总数量÷总份数32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.第七单元数学广角33、数不仅可以用来表示数量和顺序,还可以用来编码.34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)0 5 4 0 0 1前3位表示邮区 前4位表示县(市) 最后2位表示投递局 35、身份证码: 18位 1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9河北省 邢台市 邢台县 出生日期 顺序码 校验码倒数第二位的数字用来表示性别,单数表示男,双数表示女.

5,小学数学五年级的知识点有哪些

五年级第一学期数学概念综合1、0既不是正数,也不是负数。正数都大于0,负数都小于0。通常情况下正、负数表示两种相反关系的量,如果盈利用正数表示,那么亏损就用负数,如果高于海平面用正数表示,那么低于海平面用负数表示。水沸腾的温度是100℃,水结冰的温度是0℃。2、在数不规则图形的面积时不满一格的看作半格。先数满格,再数半格。3、长方形的周长=(长+宽)×2 长方形的面积=长×宽 正方形的周长=边长×4 正方形的面积=边长×边长4、沿着平行四边形的任意一条高剪开,然后通过移动拼成一个长方形。长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。5、将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。用字母表示S=a×h÷2。 等底等高的两个三角形的面积相等。6、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。7、将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2字母表示S=(a+b)×h÷2.8、分母是10、100、1000……的分数都可以用小数表示。分母是10的分数写成一位小数,表示十分之几。分母是100的分数写成两位小数,表示百分之几。分母是1000的分数写成三位小数,表示千分之几。小数点左边第一位是个位,计数单位个(1)小数点左边第二位是十位,计数单位十(10)小数点右边第一位是十分位,计数单位十分之一(0.1)小数点右边第二位是百分位,计数单位百分之一(0.01)小数点右边第三位是千分位,计数单位千分之一(0.001)小数部分最高位是十分位,最大的计数单位是十分之一。相邻两个计数单位之间的进率是10。9、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一)0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。10、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。11、用“万”作单位:1、在万位后面点上小数点;2、添个“万”字。用“=”号。用“亿”作单位:1、在亿位后面点上小数点;2、添个“亿”字。用“=”号。注意:改写不能改变原数的大小。省略万后面的尾数:要看“千”位,用四舍五入法取近似值。用“≈”号。省略亿后面的尾数:要看“千万”位,用四舍五入法取近似值。用“≈”号。保留整数,就是精确到个位,要看小数部分第一位(十分位)。保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)。保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)。注意:在表示近似值时末尾的“0”一定不能去掉。例如,一个小数保留两位小数是1、50,末尾的“0”不能去掉。虽然1、50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。12、计算小数加减法时,要把小数点对齐,也就是相同数位对齐。13、找规律:1、找到周期;2、将个数÷周期;3、余数是几就是第几个。4、要算每个项目一共有几个,可以分三步去做:(1)每几个为一组;(2)每组中有几个;再乘一共有组数(3)最后加上余数中的个数就等于一共有多少个。14、解决问题中的策略:用一一列举法将可能的情况用列表法全部列举出来,列举时的技巧是先考虑数字较大的(放在第一行)。15、在计算小数乘法时(1)算:按照整数乘法的法则进行计算;(2)看:两个因数中一共有几位小数(3)数:就从积的末尾起数出几位;(4)点:点上小数点;(5)去:去掉小数末尾的0。16、一个小数乘10、100、1000……只要把小数点向右移动一位、两位、三位……一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……17、1平方千米就是边长1000米的正方形的面积,等于1000000平方米。1公顷就是边长100米的正方形的面积,等于10000平方米。 1平方千米=100公顷。1公顷=100公亩=10000平方米18、整数加、减、乘、除法的运算定律对于小数也同样适用。加法交换律:a+b=b+a 加法结合律:(a+b)+c= a +(b+c)乘法交换律:a×b=b×a 加法结合律:(a×b)×c= a ×(b×c)减法的性质:a―b―c = a―(b+c)除法的性质:a÷b÷c = a÷(b×c)19、除数是小数的除法,首先看除数一共有几位小数,然后就根据商不变的规律,将被除数和除数同时扩大,使之变为除数是整数的除法,重点是将商的小数点和现在被除数的小数点对齐,除不尽的添“0”继续除(一下子只能添一个0),哪一位不够商1就在那一位上商0。20、当一个因数不为0时,另一个因数大于(小于)1,积就大于(小于)第一个因数。(一个因数乘一个大于1的数,积会越乘越大;乘一个小于1的数,积会越乘越小。)A×(>1)(>)A A×(<1)(<)A当被除数不为0时,除数大于(小于)1,商反而小于(大于)被除数。(除以一个大于1的数,商反而越除越小;除以一个小于1的数,商反而越除越大。)21、质量单位:1吨=1000千克, 1千克=1000克,长度单位:1千米=1000米 1米=10分米=100厘米=1000毫米容积单位:1升=1000毫升 面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米
人教版五年级上册数学知识点 1、小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。 2、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”发保留一定的小数位数,求出商的近似数。 3、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。 4、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 5、小数部分的位数是有限的小数,叫做有限小数。小书部分的位数是无限的小数,叫做无限小数。 6、求近似数的方法一般有三种: ⑴四舍五入法:求一个数的近似数,主要是看它省略的最高位上的数,是小于5,大于5还是等于5。如果省略的尾数最高位上的数是4或比4小,把尾数都舍去。如果省略的尾数最高位上的数是5或比5大,把尾数省略后向前一位进一。 ⑵进一法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都要向它的前一位进1。如:把400千克粮食装进麻袋,如果每条麻袋只能装75千克,至少需要几条麻袋?因为400÷75=5.33……就是说,400千克粮食装5条麻袋还余25千克,这25千克还需要用一条麻袋来装,所以一共需要6条麻袋。即:400÷75=5.33……≈6(条)这种求近似数的方法,叫做进一法。 ⑶去尾法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都不需要向它的前一位进1。如:把200张纸订成每本12张的本子,可以订成多少本?因为200÷16=16.66……,就是说,22张纸订成16本还余8章,根据题里的要求,12张纸才能订成一本,余下的8张纸不能订成有12张纸有本子,所以一共只能订成16本。即:200÷16=16.66……≈16(本)这种求近似数的方法,叫做去尾法。 7、成年男子的标准体重=身高-105 8、含有未知数的等式称为方程。 9、使方程左右两边相等的未知数的值,叫做方程的解。 10、求方程的解的过程叫做解方程。 11、华氏温度=摄氏温度×1.8+32 12、平行四边形的面积=底×高 字母公式: s=ah 13、三角形的面积=底×高÷2 字母公式: s=ah÷2 14、梯形的面积=(上底+下底)×高÷2 字母公式: s=(a+b)h÷2 15、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。 16、数不仅可以用来表示数量和顺序,还可以用来编码。
....这得看老师都讲什么了吧···我毕业多年了...小学的基础知识很重要啊~~关系到以后的学习呢!成绩不重要 但是要打好基础!
小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计和可能性,数学广角

6,一到六年级人教版数学书所有知识点

小学数学基础知识整理一、小学数学基础知识整理(一到六年级) 小学一年级 九九乘法口诀表。学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。 小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。 小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。 小学六年级 比例百分比概率,圆扇圆柱及圆锥。 二、必背定义、定理公式 三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。三、读懂理解会应用以下定义定理性质公式 (一)、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。(二)、数量关系计算公式方面 1、单价×数量=总价 2、单产量×数量=总产量 3、速度×时间=路程 4、工效×时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数×因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 有余数的除法: 被除数=商×除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6) 6、 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米。 1亩=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 9、比例的基本性质:在比例里,两外项之积等于两内项之积。 10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y 12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 15、要学会把小数化成分数和把分数化成小数的化发。16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。) 17、互质数: 公约数只有1的两个数,叫做互质数。 18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数) 20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数) 21、最简分数:分子、分母是互质数的分数,叫做最简分数。 分数计算到最后,得数必须化成最简分数。 个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。 22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。 24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。 28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应) 29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。 30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。 31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414 32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。 如3. 141592654 33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654…… 34、什么叫代数? 代数就是用字母代替数。 35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c(三)、一般运算规则 1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和和-一个加数=另一个加数 7 被减数-减数=差被减数-差=减数 差+减数=被减数 8 因数×因数=积积÷一个因数=另一个因数 9 被除数÷除数=商被除数÷商=除数 商×除数=被除数 四、小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 周长=直径×∏=2×∏×半径 C=∏d=2∏r 面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3

7,小学数学的知识点都有哪些

小学数学学习概述 数学学习主要是对学生数学思维能力的培养.这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学. 学习类型分析 1.方式性分类 (1)接受学习与发现学习 定义:将学习的内容以定论的形式呈现给学习者的学习方式. 模式:呈现材料—讲解分析—理解领会—反馈巩固 (2)发现学习 定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式. 模式:呈现材料—假设尝试—认知整合—反馈巩固. 2.知识性分类一 (1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动.过程:选择—领会—习得——巩固 (2)技能学习 定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程. 过程:演示—模仿—练习—熟练—自动化 (3)问题解决学习 以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动. 提出问题—分析问题—解决问题—反思过程 3.知识性分类二 (1)概念性(陈述性)知识的学习 把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识. 概念学习:同化与形成. 利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成.概念形成是小学生获得数学概念的主要形式. (2)技能性(程序性)知识的学习 小学数学技能主要是运算技能. 运算技能的形成分为三个阶段: ①认知阶段:“引导式”的尝试错误.从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征.②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确.③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率. (3)问题解决(策略性知识)的学习 通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习. 小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性 尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一 定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别. 4.任务性分类 (1)记忆操作类学习 如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等. (2)理解性的学习 如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题. (3)探索性的学习 如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等. 小学生数学认知学习 一、小学生数学认知学习的基本特征 1.生活常识是小学生数学认知的起点 要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”. 2.小学生数学认知是一个主体的数学活动过程 数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力. 3.小学生数学认知思维具有直观化的特征 由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构. 4.小学生数学认知是一个“再发现”和“再创造”的过程 小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程.要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理. 二、小学生数学认知发展的基本规律 1.小学生数学概念的发展 (1)从获得并建立初级概念为主发展到逐步理解并建立二级概念 (2)从认识概念的自身属性逐步发展到理解概念间的关系 (3)数学概念的建立受经验的干扰逐渐减弱 2.小学生数学技能的发展 (1)从依赖结构完满的示范导向发展到依赖对内部意义的理解 (2)从外部的展开的思维发展到内部的压缩的思维 (3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展 3.小学生空间知觉能力的发展 (1)方位感是逐步建立的 (2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握 (3)空间透视能力是逐步增强的 4.小学生数学问题解决能力的发展 (1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段 小学生数学能力的培养 一、数学能力概述 1.能力概述 能力是指个体能胜任某种活动所具有的心理特征 2.数学能力 数学能力是顺利完成数学活动所具备的,且直接影响其活动效率的一种个性心理特征 (1)运算能力:数据运算、逻辑运算和操作运算 (2)空间想象力:依据实物建立模型、依据模型还原实物、依据模型抽象出特征、大小和位置关系、模型或实物进行分解与组合等能力 (3)数学观察能力:对象的概括化、知觉的形式化、对空间结构的知觉和逻辑模式的识别等能力 (4)数学记忆能力:对概括化、形式化的符号、命题、性质及空间结构、逻辑模式等识记与再现的能力 (5)数学思维能力:对已有数学信息运用数学推理的思考方式进行思维的能力. 二、儿童数学思维能力的差异性 1.产生差异的原因 (1)多元智力理论 (2)思维类型不同 2.对待差异的态度 (1)求同存异 (2)扬长避短 三、数学能力的培养 1.培养学生的数学学习兴趣 (1)从学生生活经验着手 (2)从建立问题情境开始 (3)让学生在“做数学”中学 2.培养基本的数学能力 (1)数学操作能力动手操作既能吸引学生的注意力,又易于激发学生的思维和想象,从而调动学习积极性,培养学习兴趣,使学生主动获得知识. 在操作中,学生既“玩”了,又“学”了,也 “想”了,思维能力得到提高,学习兴趣得到培养,书本知识得到理解和消化. 2.数学语言能力 在学生动手操作活动中,还要求学生通过语言表达,对数学概念逐步建立起清晰而深刻的表象,进而自觉而巩固地掌握数学知识. 学生在表达数学时,要求语言简洁,运用数学术语准确.严谨的数学态度,需要严谨的数学语言相伴. 3.问题解决能力 发现、提出、分析、解决数学问题的能力, 是最重要的也是最终数学能力的表现. (1)创设问题情境,培养问题意识 有目的、有意识地创设问题情境,设障立疑,造成学生对新学知识感到有问题可想,有矛盾可解决的情境,让学生处于“心求通而不能,口欲言而未得”. (2)主动探索,增强学生的主体意识 ①对问题进行大胆猜想、尝试解题 从生活经验出发提出猜想 ,从已有知识经验基础上提出猜想. ②通过各种形式交流猜想,选择更优方案 (3)拓展变化,增强学生的应用意识 强调数学应用,不全是回到测量、制图、会计等教学活动,而是培养一种应用数学知识和思想方法解决问题的欲望和方式 (4)运用所学知识,解决数学问题 生活中的数学问题很多,在教学中引导学生把生活中的问题抽象为数学问题,这样既可以加深学生对所学知识的理解,又有助于提高解决问题的能力.如房屋装修粉刷面积,铺地用多少块砖,种植面积与棵数,车轮为什么制成圆形等. 小学数学课堂教学过程 一、小学数学教学过程的主要矛盾 1.数学教与学的矛盾 教师是主导位,学生是主体.学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者. 2.小学生的认知特点与数学学科知识间的矛盾 数学的抽象性与小学生认知的具体形象性之间,数学的严密性与小学生认知的简单化、直观化之间,数学应用的广泛性与小学生知识面窄、接触实际生活少之间,都会产生矛盾. 3.小学生认知结构发展水平与教师传授的 数学知识之间的矛盾 首先,教师对数学知识的传授与学生对数学知识的理解、掌握之间就有矛盾.其次,教师的数学语言表达与学生对它的理解之间的矛盾.再次,小学生掌握的新知识与旧有知识的矛盾. 二、小学数学教学过程 1.小学数学教学过程是师生交往与互动的过程 交往的基本属性是互动性和互惠性,交往的基本方式是对话和参与.对小学生而言,交往为他们心态的开放,主体性的凸现,创造性的解放提供了空间;对教师而言,课堂上的交往是与学生共同分享对数学的理解、共同感受学习的快乐.小学数学家教学过程是师生间、学生间的平等对话、交流的过程,这种对话、交流的内容,包括数学知识、技能的信息和情感、态度、态度价值观等各个方面的信息.师生正是通过这种对话和交流来实现课堂中的师生之间的互动的. 有效的交往互动要注意以下两个方面: (1) 要充分调动小学生的主动性、积极性 数学教学过程对数学内容进行探索、实践与思考的学习过程,学生是学习活动的主体.教师只有引导学生开展观察、操作、比较、猜想、推理、交流等多种形式的活动,才能促使学生建构自己对数学的理解,进行掌握数学知识和技能,逐步学会从数学的角度观察事物,思考问题,产生学习数学的兴趣与愿望. (2)要实现教师角色的转变 教师的主导作用可在以下活动中得到体现. ①调动学生的学习积极性,激发学生的学习动机,引导学生积极主动地投入到学习活动中去. ②了解学生的想法,有针对性地引导,帮助学生解决学习困难;同时鼓励不同的观点,参与学生的讨论,评估学习,作出调整. ③为学生的学习创设一个良好的课堂环境和精神氛围,引导学生开展积极主动的数学活动. 2.小学数学教学过程是老师引导学生开展数学活动的过程 (1)组织和引导学生经历“数学化”的过程 学生数学学习应当成为“数学化”的过程.即学生从具体情境出发,经过归纳、抽象和概括等思维活动,寻找数学模型,得出数学结论的过程.教师要善于引导学生把生活经验上升到数学知识和方法. (2)师生共同生成与建构数学知识的过程 在学校学习的情境下,教师对于指导学生进行数学知识的建构具有重要的引导和指导作用,教师要注重引导学生有效地建构数学知识,在数学课堂教学过程中“生成”知识与方法.这种“生成”的过程正是通过师生双方交互作用、教师的外因促使学生的内因而完成的. (3)在活动中体验数学,获得数学发展的过程 小学数学教学过程应成为师生共同参与的活动过程.在这一过程中,教师为学生设计和提供有意义的情境,组织学生共同进行操作、交流、思考等活动.要给学生提供相对充分的时间和空间,让学生获得自主探索动手实践的机会,从现实问题出发学习数学知识的机会,从相关学科和已有知识提出数学问题的机会,对数学内部的规律和原理进行探索和研究的机会. 3.小学数学教学过程是师生共同发展的过程 (1)促进学生的发展 小学数学教学的基本目的是促进学生的发展,为小学生终身发展奠定基础.学生应该在数学知识与技能、数学思考、解决问题和情感态度价值观等四个方面得到发展.这四个方面应交织、渗透,密不可分,形成一个整体. (2)促进教师的专业成长优秀教师都是在教学实践中成长起来的. 良好的知识结构、能力结构,专业领引,同行间的切磋、交流,不断的自我反思,是优秀教师成长的关键因素.教师的专业能力包括教学设计、教学实施和教学反思等能力.教学过程必须遵循教育规律和儿童身心发展的规律,还要教师有创造性地解决师生、生生间的认知、情感和价值观的冲突的能力,形成独具个人魅力的教学风格,教学是一个富有个性化的创造过程.
文章TAG:小学数学知识点总结小学小学数学数学

最近更新

  • 在家做什么能赚钱,在家做什么赚钱

    在家做什么赚钱21世纪是互联网的时代,真正的做到了在家足不出户就可以运作全国的生意在家照顾家庭的同时还能做一番事业,具体网上搜下--铁行老师让智者帮你引路!望采纳我也是一边带孩子一 ......

    湖州市 日期:2023-05-06

  • 吴亚琴,程益龙喜欢吴亚琴写藏头诗

    程益龙喜欢吴亚琴写藏头诗2,姓吴的女孩子取什么名字好听带亚字的3,求吴姓女宝宝名字4,吴亚琴我喜欢你的藏头诗怎么写1,程益龙喜欢吴亚琴写藏头诗程涂半是依船上益看愚谷有光辉龙虎门前辨 ......

    湖州市 日期:2023-05-06

  • 夏天有什么景物,夏天有什么景物

    夏天有什么景物2,夏天有那些景色1,夏天有什么景物火红的太阳夏荷很多啊,夏天的自然风景更值得观赏2,夏天有那些景色夏天是诱人的,蔚蓝的天空,碧绿的庄稼,火红的石榴花;鸟儿自由的翱翔 ......

    湖州市 日期:2023-05-06

  • 短篇小说,找些短篇小说

    找些短篇小说巴尔扎克《人间喜剧》全集,卡夫卡《判决》、《变形记》,不知到这些算不算有深度?契珂夫短篇小说,例如跳来跳去的女人、挂在脖子上的安娜、胖子和瘦子、变色龙,都很不错,希望你 ......

    湖州市 日期:2023-05-06

  • 洞箫制作,打孔算法从何处打孔?

    4.将L基乘以0.69,得到从气孔线到第三个孔的距离“L3”,3.将L基乘以0.74,得到从气孔线到第二个孔的距离“L2”,2.将L底乘以0.84,得到从气孔线到第一个气孔的距离“ ......

    湖州市 日期:2023-05-06

  • 励志朋友圈说说,有什么激励人的话

    有什么激励人的话1、未曾失败的人恐怕也未曾成功过。2、人生伟业的建立,不在能知,乃在能行。3、挫折其实就是迈向成功所应缴的学费。4、任何的限制,都是从自己的内心开始的。5、忘掉失败 ......

    湖州市 日期:2023-05-06

  • 冈怎么组词,冈字的组词有什么

    冈字的组词有什么山冈、冈峦、福冈、井冈山、景阳冈{0}2,冈的组词冈组词冈字组词冈怎么组词山冈土冈、峦冈、沙冈、干冈、东冈、回冈、螺冈、冈坡、陟冈{1}3,冈字可以怎么组词“冈”字 ......

    湖州市 日期:2023-05-06

  • 浓溶液,浓度的稀释计算溶液:比较溶液同沸点要考虑蒸汽压因素

    但要比较溶液同浓度的沸点,就要深究影响溶液蒸汽压的关键因素,浓度的稀释计算溶液:简介:浓度的稀释计算溶液广泛应用于医药生产,如用稀释法配制溶液剂;将浓缩液水煎醇沉;在浓缩注射液稀释 ......

    湖州市 日期:2023-05-06