首页 > 云南 > 楚雄州 > 三角函数所有公式,高一数学的三角函数的所有公式

三角函数所有公式,高一数学的三角函数的所有公式

来源:整理 时间:2022-12-30 06:35:57 编辑:好学习 手机版

本文目录一览

1,高一数学的三角函数的所有公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-sinBcosA
三角函数的基本关系式 这里符合你的要求 http://www.521yy.com/tools/maths/

高一数学的三角函数的所有公式

2,高中数学有关三角函数的所有公式

tanα ·cotα=1sinα ·cscα=1cosα ·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

高中数学有关三角函数的所有公式

3,要三角函数的所有公式要全的最好是手写的

三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=vercos(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2](望采纳,谢谢。)
sinα ·cscα=1   cosα ·secα=1 sinα/cosα=tanα=secα/cscα   cosα/sinα=cotα=cscα/secα sin2α+cos2α=1   1+tan2α=sec2α   1+cot2α=csc2α  引诱公式(口诀:奇变偶不变,符号看象限。)   sin(-α)=-sinα   cos(-α)=cosα tan(-α)=-tanα   cot(-α)=-cotα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   sin(π+α)=-sinα   cos(π+α)=-cosα   tan(π+α)=tanα   cot(π+α)=cotα   sin(3π/2-α)=-cosα   cos(3π/2-α)=-sinα   tan(3π/2-α)=cotα   cot(3π/2-α)=tanα   sin(3π/2+α)=-cosα   cos(3π/2+α)=sinα   tan(3π/2+α)=-cotα   cot(3π/2+α)=-tanα   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα  两角和与差的三角函数公式 万能公式   sin(α+β)=sinαcosβ+cosαsinβ   sin(α-β)=sinαcosβ-cosαsinβ   cos(α+β)=cosαcosβ-sinαsinβ   cos(α-β)=cosαcosβ+sinαsinβ   tanα+tanβ   tan(α+β)=——————   1-tanα ·tanβ   tanα-tanβ   tan(α-β)=——————   1+tanα ·tanβ   2tan(α/2)   sinα=——————   1+tan2(α/2)   1-tan2(α/2)   cosα=——————   1+tan2(α/2)   2tan(α/2)   tanα=——————   1-tan2(α/2)   半角的正弦、余弦和正切公式 三角函数的降幂公式   二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式   sin2α=2sinαcosα   cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 看看够么,不够我在给你写  cot(2π-α)=-cotα   sin(2kπ+α)=sinα   cos(2kπ+α)=cosα   tan(2kπ+α)=tanα   cot(2kπ+α)=cotα   (其中k∈z)

要三角函数的所有公式要全的最好是手写的

4,有关三角函数的公式 全部

倒数关系:  tanα ·cotα=1  sinα ·cscα=1  cosα·secα=1  商的关系:   sinα/cosα=tanα=secα/cscα  平方关系:(sinx)^2+(cosx)^2=1 (secx)^2-(tanx)^2=1 (cscx)^2-(cotx)^2=1 二倍角公式  sin2A=2sinA·cosAcos2A=2(cosx)^2-1=1-2(sinx)^2tan2A=(2tanA)/(1-tan^2(A))半角公式  sin^2(α/2)=(1-cosα)/2  cos^2(α/2)=(1+cosα)/2  tan^2(α/2)=(1-cosα)/(1+cosα)  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式  sinα=2tan(α/2)/[1+tan^2(α/2)]  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]  tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)  sin^2(A/2)=[1-cos(A)]/2  cos^2(A/2)=[1+cos(A)]/2  tan(A/2)=(1-cosA/sinA=sinA/(1+cosA)两角和公式   两角和公式cos(α+β)=cosαcosβ-sinαsinβ  cos(α-β)=cosαcosβ+sinαsinβ  sin(α+β)=sinαcosβ+cosαsinβ  sin(α-β)=sinαcosβ -cosαsinβ  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)  cot(A+B) = (cotAcotB-1)/(cotB+cotA)  cot(A-B) = (cotAcotB+1)/(cotB-cotA)和差化积  sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2] 和差化积公式sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]  cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]  cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差  sinαsinβ=-[cos(α+β)-cos(α-β)] /2  cosαcosβ=[cos(α+β)+cos(α-β)]/2  sinαcosβ=[sin(α+β)+sin(α-β)]/2  cosαsinβ=[sin(α+β)-sin(α-β)]/2公式一:  设α为任意角,终边相同的角的同一三角函数的值相等:  sin(2kπ+α)= sinα  cos(2kπ+α)= cosα  tan(2kπ+α)= tanα  cot(2kπ+α)= cotα  公式二:  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:  sin(π+α)= -sinα  cos(π+α)= -cosα  tan(π+α)= tanα  cot(π+α)= cotα  公式三:  任意角α与 -α的三角函数值之间的关系:  sin(-α)= -sinα  cos(-α)= cosα  tan(-α)= -tanα  cot(-α)= -cotα  公式四:  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:  sin(π-α)= sinα  cos(π-α)= -cosα  tan(π-α)= -tanα  cot(π-α)= -cotα  公式五:  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:  sin(2π-α)= -sinα  cos(2π-α)= cosα  tan(2π-α)= -tanα  cot(2π-α)= -cotα  公式六:  π/2±α及3π/2±α与α的三角函数值之间的关系:  sin(π/2+α)= cosα  cos(π/2+α)= -sinα  tan(π/2+α)= -cotα  cot(π/2+α)= -tanα  sin(π/2-α)= cosα  cos(π/2-α)= sinα  tan(π/2-α)= cotα  cot(π/2-α)= tanα  sin(3π/2+α)= -cosα  cos(3π/2+α)= sinα  tan(3π/2+α)= -cotα  cot(3π/2+α)= -tanα  sin(3π/2-α)= -cosα  cos(3π/2-α)= -sinα  tan(3π/2-α)= cotα  cot(3π/2-α)= tanα  (以上k∈Z)  A·sin(ωt+θ)+ B·sin(ωt+φ) =  √{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)} }
三角函数公式 两角和公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa  cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) cot(a+b)=(cotacotb-1)/(cotb+cota)  cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式 tan2a=2tana/[1-(tana)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2a=2sina*cosa三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a) 半角公式 sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa)) cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa))  tan(a/2)=(1-cosa)/sina=sina/(1+cosa)和差化积 2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b) ) 2cosacosb=cos(a+b)+cos(a-b) -2sinasinb=cos(a+b)-cos(a-b) sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosb积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tga=tana=sina/cosa万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a) sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)

5,三角函数全公式

原发布者:zglringsdrof三角形中三角函数基本定理Tag:三角函数 点击:1522【正弦定理】式中R为ABC的外接圆半径(图1.3).【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积.
诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tga=tana=sina/cosa 两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b)) tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b)) 三角函数和差化积公式 sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2) cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 积化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a) 半角公式 sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 万能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) 其它公式 a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重点三角函数 csc(a)=1/sin(a) sec(a)=1/cos(a) 双曲函数 sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)
1弧度定义|a|=L弧长:r半径(则l8O度=兀弧度则S扇形=Lr/2=(|a|r^2)/2. 2COS(a+2兀k)=COSaSin(a+2兀k)=Sina tan(a+2兀k)=tana COS[a+(2兀k+1)]=-COSa sin[a+(2兀k+|)]=-sina tan[a+(2兀k+l]=tana COS-a=COSa sin-a=-Sina tan-a=-tana COS(兀/2土a)=干sina sin(兀/2土a)=COSacot(兀/2士a)=干tan sin(a土b)=sinaCosb土Cosasinb COs(a土b)=CosaCosb干sinasinb tan(a土b)=(tana土tanb)/(l干tanatanb) sina/2=土厂[(l-Cosa)/2] Cosa/2=土厂[(l+Cosa)/2] tana/2=土厂[(l-Cosa)/(l+Cosa)] sina=2tan(a/2)/(l+tan(a/2)^2) COsa=(l-tan(a/2)^2)/(l+tan(a/2)^2) 三角函数5 2 tana=(2tan(a/2))/(1-(tan(a/2))^2 sin2a=2sinaCOsa Cos2a=(COSa)^2-(sina)^2=2(Cosa)^2-|=l-2(sina)^2 tan2a=(2tana)/(l-(tana)^2) sin3a=3sina-4(sina)^3 CoS3a=4(Cosa)^3-3Cosa tan3a=(3tana-(tana)^3)/(l-3(tana)^2) sinasinb=[C0s(a-b)-Cos(a+b)]/2 sinacosb=[Sin(a-b)+sin(a+b)]/2 COsaCOSb=[COs(a-b)+CoS(a-b)]/2 sina+Sinb=2sin((a+b)/2)coS((a-b)/2) COsa+Cosb=2Cos((a+b)/2)C0s((a-b)/2) CoSa-C0sb=-2sin((a+b)/2)sin((a-b)/2) xsina士YCosa=厂(x^2+Y^2)sin(a土arCtan(Y/X)补tan(a/2)=sina/(l+COs)=(l-COsa)/sina 3函数平移定理: )^2) 三角函数6Y=f(x)向上或下平移|k|个单位得Y-或+|k|=f(X)、向左或右得Y=f(x+或-|k|)、将纵坐标伸或缩|k|倍得Y/|k|=f(X)、将横坐标伸或缩|k|得Y=f(X/|k|)、与-Y=f(X)和Y=f(-X)关于X轴和Y轴对称.(注意对应) 4 y=sinx定义域X属实数值域[-l,l]周期2兀单调性[2k兀-兀/2,2k兀+兀/2]递增[2k兀+兀/2,2k兀+3兀/2]递减最大值时x=2k兀+兀/2最小值时X=2k兀-兀/2零值时X=k兀、奇函数、y=COsx定义域x属实数值域[-1,l]周期2兀单调性[(2k-l)兀,2k兀]递增[2k兀,(2k+l)兀]递减最大值时x=2k兀最小值时x=(2k+|)兀零值时x=k兀+兀/2、偶函数、y=tanx定义域x不等k兀+兀/2值域实数周期兀单调性(k兀-兀/2,k兀+兀/2)递增零值时X=k 5 y=Asin或Cos(Wx+e)周期为2兀/|W|、y=Atan或Cot(Wx+e)周期为兀/|W|、在y=Asin(Wx+e)中A振幅lW|/2兀频率Wx+e相位e初相、(周期:若y=f(x)有f(x+T)=f(x),T为最小正数且不为O就称T为y=f(X)的周期且kT,(K属整数)一定也是该函数的周期、 5三角函数线:正弦线余弦线正切线、 6tana=Sina/Cosa 7规定逆时针旋转的角为正角顺则负角不动则零角 (sinA)^2+(CosA)^2=l、SinA/COsA=时x=(2k+|)兀零值时x=k兀+兀/2、偶函数、y=tanx定义域x不等k兀+兀/2值域实数
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 它有六种基本函数: 函数名 正弦 余弦 正切 余切 正割 余割 符号 sin cos tan cot sec csc 正弦函数 sin(A)=a/h 余弦函数 cos(A)=b/h 正切函数 tan(A)=a/b 余切函数 cot(A)=b/a 在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)来表示。 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
http://hi.baidu.com/411262448sun/blog/item/68fab5eaa134c9d0d439c92a.html这上面有很多相关文章:? 三角函数的一些有关公式 ? 三角函数公式大全 ? 三角函数公式 ? 三角函数的基本公式 ? 三角函数变换公式 ? 三角函数公式查询 ? 三角函数公式-自整理非常完整 ? 三角函数公式证明(全部)

6,最全三角函数公式

三角函数是初高中的一个重点,特别是高中,如果你想参加数学竞赛的话,这些公式更是要牢牢掌握,不过有一些特殊的三角函数公式自己平时做题时也要注意总结啦!全国数学联赛的话考的就全是技巧了,这就要平时多注意总结啦!同角三角函数的基本关系 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式 sin2 α+cos2 α=1 tan α *cot α=1一个特殊公式 (sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)锐角三角函数公式 正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*n倍角公式 sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1) 证明:当sin(na)=0时,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】 这说明sin(na)=0与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】=0是同解方程。 所以sin(na)与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】成正比。 而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1π/n】 与sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系数与n有关 ,但与a无关,记为Rn)。 然后考虑sin(2n a)的系数为R2n=R2*(Rn)^2=Rn*(R2)^n.易证R2=2,所以Rn= 2^(n-1)半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式 cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差 sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √诱导公式 sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式 sinα=2tan(α/2)/[1+(tan(α/2))2] cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2] tanα=2tan(α/2)/[1-(tan(α/2))2] 其它公式(1) (sinα)2+(cosα)2=1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 证明下面两式,只需将一式,左右同除(sinα)2,第二个除(cosα)2即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
高考三角函数在逐年降低难度,多背公式没有用,就背会书上那些基本的就可以了

7,三角函数的有关公式都有哪些

同角三角函数间的关系sinα/cosα=tanαcosα/sinα=cotanαtanα cotanα=1sin2α+cos2α=·1secα=1/cosαcscα=1/sinαsec2α=1+tan2αcsc2α=1+cotan2α两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sin2α=2sincosα半角公式 sin(A/2)=±√(1-cosA)/2)〕cos(A/2)=±√〔(1+cosA)/2〕tan(A/2)=±√〔(1-cosA)/(1+cosA)〕 tan(A/2)=±√〔(1-cosA)/(1+cosA)〕 ctg(A/2)=±√〔(1+cosA)/(1-cosA)〕 积化和差2sinAcosB=sin(A+B)+sin(A-B)2sinBcosA=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)+cos(A-B) 2sinAsinB=-cos(A+B)+cos(A-B) 和差化积 sinA+sinB=2sin((A+B)/2)cos((A-B)/2 sinA-sinB=2sin((A-B)/2)cos((A+B)/2)cosA+cosB=2cos((A+B)/2)cos((A-B)/2) cosA-cosB=-2sin((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB ctgA-ctgB=sin(B-A)/sinAsinB 还有诱导公式,我觉得不用记。只记住“奇变偶不变,符号看象限”就行了。
同角三角函数间的关系sinα/cosα=tanαcosα/sinα=cotanαtanα cotanα=1sin2α+cos2α=·1secα=1/cosαcscα=1/sinαsec2α=1+tan2αcsc2α=1+cotan2α两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sin2α=2sincosα半角公式 sin(A/2)=±√(1-cosA)/2)〕cos(A/2)=±√〔(1+cosA)/2〕tan(A/2)=±√〔(1-cosA)/(1+cosA)〕 tan(A/2)=±√〔(1-cosA)/(1+cosA)〕 ctg(A/2)=±√〔(1+cosA)/(1-cosA)〕 积化和差2sinAcosB=sin(A+B)+sin(A-B)2sinBcosA=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)+cos(A-B) 2sinAsinB=-cos(A+B)+cos(A-B) 和差化积 sinA+sinB=2sin((A+B)/2)cos((A-B)/2 sinA-sinB=2sin((A-B)/2)cos((A+B)/2)cosA+cosB=2cos((A+B)/2)cos((A-B)/2) cosA-cosB=-2sin((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB ctgA-ctgB=sin(B-A)/sinAsinB 还有诱导公式,我觉得不用记。只记住“奇变偶不变,符号看象限”就行了。 在百度文库和百科都有的
两角和与差的三角函数:   cos(α+β)=cosα·cosβ-sinα·sinβ   cos(α-β)=cosα·cosβ+sinα·sinβ   sin(α±β)=sinα·cosβ±cosα·sinβ   tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)   ·三角和的三角函数:   sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ   cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ   tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)   ·辅助角公式:   asinα+bcosα=√(a2+b2)sin(α+arctan(b/a)),其中   sint=b/√(a2+b2)   cost=a/√(a2+b2)   tant=b/a   asinα-bcosα=√(a2+b2)cos(α-t),tant=a/b   ·倍角公式:   sin(2α)=2sinα·cosα=2/(tanα+cotα)   cos(2α)=(cosα)^2-(sinα)^2=)=2(cosα)^2-1=1-2(sinα)^2   tan(2α)=2tanα/(1-tan2α)   ·三倍角公式:   sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)   cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)   tan(3α) = (3tanα-tan³α)/(1-3tan³α) = tanαtan(π/3+α)tan(π/3-α)   ·半角公式:   sin(α/2)=±√((1-cosα)/2)   cos(α/2)=±√((1+cosα)/2)   tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα   ·降幂公式   sin2α=(1-cos(2α))/2=versin(2α)/2   cos2α=(1+cos(2α))/2=covers(2α)/2   tan2α=(1-cos(2α))/(1+cos(2α))   ·万能公式:   sinα=2tan(α/2)/[1+tan2(α/2)]   cosα=[1-tan2(α/2)]/[1+tan2(α/2)]   tanα=2tan(α/2)/[1-tan2(α/2)]   ·积化和差公式:   sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]   cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]   cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]   sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]   ·和差化积公式:   sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]   sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]   cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]   cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]   ·推导公式   tanα+cotα=2/sin2α   tanα-cotα=-2cot2α   1+cos2α=2cos2α   1-cos2α=2sin2α   1+sinα=[sin(α/2)+cos(α/2)]2   ·其他:   sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0   cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及   sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2   tanatanbtan(a+b)+tana+tanb-tan(a+b)=0   cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx   证明:   左边=2sinx(cosx+cos2x+...+cosnx)/2sinx   =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)   =[sin(n+1)x+sinnx-sinx]/2sinx=右边   等式得证   sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx   证明:   左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)   =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)   =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边   等式得证   三倍角公式推导   sin3a   =sin(2a+a)   =sin2acosa+cos2asina   =2sina(1-sin2a)+(1-2sin2a)sina   =3sina-4sin³a   cos3a   =cos(2a+a)   =cos2acosa-sin2asina   =(2cos2a-1)cosa-2(1-cos2a)cosa   =4cos³a-3cosa   sin3a=3sina-4sin³a   =4sina(3/4-sin2a)   =4sina[(√3/2)2-sin2a]   =4sina(sin260°-sin2a)   =4sina(sin60°+sina)(sin60°-sina)   =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]   =4sinasin(60°+a)sin(60°-a)   cos3a=4cos³a-3cosa   =4cosa(cos2a-3/4)   =4cosa[cos2a-(√3/2)2]   =4cosa(cos2a-cos230°)   =4cosa(cosa+cos30°)(cosa-cos30°)   =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*   =-4cosasin(a+30°)sin(a-30°)   =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]   =-4cosacos(60°-a)[-cos(60°+a)]   =4cosacos(60°-a)cos(60°+a)   上述两式相比可得   tan3a=tanatan(60°-a)tan(60°+a)
同角三角函数间的关系sinα/cosα=tanαcosα/sinα=cotanαtanα cotanα=1sinα+cosα=·1secα=1/cosαcscα=1/sinαsecα=1+tanαcscα=1+cotanα两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 等等,东西很多,建议你上网找一下,百度百科里都有的
文章TAG:三角函数所有公式三角三角函数函数

最近更新

  • 红色曼陀罗,红色曼陀罗花

    红色曼陀罗花我们这山上就有,不过是秋天开的,野生的,在我们这叫老wa蒜红色曼陀罗花就是彼岸花春分前后三天叫春彼岸,秋分前后三天叫秋彼岸,是上坟的日子。彼岸花开在秋彼岸期间,非常准时 ......

    楚雄州 日期:2023-05-06

  • 无偿赠与,无偿赠予非直系亲属须哪些手续受赠人未满十八周岁可以吗

    无偿赠予非直系亲属须哪些手续受赠人未满十八周岁可以吗可以赠与,表示赠与将东西交付即可。年满18周岁申请办理分户口,是需要提供有效的身份证原件,户口簿原件,房产证明等资料才可以申请办 ......

    楚雄州 日期:2023-05-06

  • 男性的外遇,男人出轨最明显表现是什么?

    老公和小三一旦经常吵架,很容易把他们分开,在破坏感情的时候,最好让他们撕破脸皮,让他们失去彼此的信任,只有这样,丈夫和情妇才能彻底断绝联系,实现真正的分离,让男人心甘情愿地回归家庭 ......

    楚雄州 日期:2023-05-06

  • 舒心,舒心拼音:易为小,心广身长

    "舒心"读音:释义:形容人的心态,感觉舒服;一切顺利,他们拿着鞭子送祝福,一起开心舒心笑,诗中描写舒心是:易为小,心广身长,用心呵护,换来我对你舒心的爱,真心, ......

    楚雄州 日期:2023-05-06

  • 数量短语,数量短语分两类使用较少出现问题

    数量短语Category数量短语分为两类:标称数量短语(修饰名词或标称-0)一般来说动量短语的使用很少出现问题,大部分出现在使用标称数量-0时而且一般都是模棱两可,数量短语,由数词 ......

    楚雄州 日期:2023-05-06

  • 稀稀拉拉,稀稀拉拉怎么写

    稀稀拉拉怎么写无聊熙熙攘攘2,稀稀拉拉什么意思稀稀拉拉,成语,指稀疏的样子。出自维熙《并不愉快的故事》:“他愣愣地站起来,焦急地搓搓手,只等到里边响起稀稀拉拉的巴掌声的时候,他才推 ......

    楚雄州 日期:2023-05-06

  • 主持人发型,央视新闻直播首位女主播以短发形象主持播音

    1980年,央视新闻联播首位女主播,以短发形象主持播音,不过初中女生发型虽然很简单,但也正是因为发型简单,所以对发质的要求相对更高,短发象征着播音员主持人大方简洁的形象,更能塑造干 ......

    楚雄州 日期:2023-05-06

  • 芒果可以放多久,芒果是热带水果之一怎么吃最好?

    芒果是著名的热带水果之一,芒果含有糖、蛋白质和粗纤维,芒果含有含量特别高的胡萝卜素,是所有水果中少有的,芒果是著名的热带水果之一,如果放入冰箱,会释放出一种酶类物质,加速芒果的变质 ......

    楚雄州 日期:2023-05-06