首页 > 上海 > 闵行区 > 上海市初中数学,上海最牛的初中数学老师哪位呀谁知道

上海市初中数学,上海最牛的初中数学老师哪位呀谁知道

来源:整理 时间:2023-05-22 04:09:36 编辑:上海生活 手机版

本文目录一览

1,上海最牛的初中数学老师哪位呀谁知道

在东南数理化的冯老师的确很好,冯老师,数学教育硕士,连续6年中考教学经验。从教以来,一直不断探索教材新教法、摸索教育新规律。精通历年上海中考数学试题,长期深入研究上海中考数学命题发展趋势,对知识重点、难点变化有独到见解。

上海最牛的初中数学老师哪位呀谁知道

2,上海市初中数学的教材有些什么版版

上海初中数学课本是沪教版,由上海教育出版社出版。七年级数学第一学期目录第九章整式第1节整式的概念9.1字母表示数9.2代数式9.3代数式的值9.4整式第2节整式的加减9.5合并同类项9.6整式的加减第3节整式的乘法9.7同底数幂的乘法9.9积的乘方9.8幂的乘方9.10整式的乘法第4节乘法公式9.11平方差公式9.12完全平方公式第5节因式分解9.13提取公因式法9.14公式法9.15十字相乘法9.16分组分解法第6节整式的除法9.18单项式除以单项式9.17同底数幂的除法9.19多项式除以单项式本章小结第十章分式第1节分式10.1分式的意义10.2分式的基本性质第2节分式的运算10.3分式的乘除10.4分式的加减10.5可以化成一元一次方程的分式方程10.6整数指数幂及其运算本章小结第十一章图形的运动第1节图形的平移11.1平移第2节图形的旋转11.2旋转11.3旋转对称图形与中心对称图形11.4中心对称第3节图形的翻折11.5翻折与轴对称图形11.6轴对称本章小结七年级数学第二学期目录第十二章实数第1节实数的概念12.1实数的概念第2节数的开方12.2平方根和开平方12.3立方根和开立方12.4 n次方根第3节实数的运算12.5用数轴上的点表示实数12.6实数的运算第4节分数指数幂12.7分数指数幂第十三章相交线平行线第1节相交线13.1邻补角、对顶角13.2垂线13.3同位角、内错角、同旁内角第2节平行线13.4平行线的判定13.5平行线的性质第十四章三角形第1节三角形的有关概念与性质14.1三角形的有关概念14.2三角形的内角和第2节全等三角形14.3全等三角形的概念与性质14.4全等三角形的判定第3节等腰三角形14.5等腰三角形的性质14.6等腰三角形的判定14.7等边三角形第十五章平面直角坐标系第1节平面直角坐标系15.1平面直角坐标系第2节直角坐标平面内点运动15.2直角坐标平面内点运动

上海市初中数学的教材有些什么版版

3,问问上海初中数学哪里好 怎么才能学习好数学

东南数理化的冯老师很不错,能轻松的在课堂教学中营造平等和谐的教学氛围,及时提出具挑战性的新问题,以激发学生积极参与课堂教学活动,同时留给学生思维的空间,鼓励学生提出不同的想法和问题,通过师生交流、生生交流不断进行教学信息的交换、反馈、反思,修正思维策略,概括和总结数学思想方法。在交流过程中,冯老师还善于捕捉、组织和判断各种信息。冯老师常说:数学老师着眼的不仅仅是数学教学还是学生的一生。东南数理化初中数学冯老师: http://www.fenglaoshi.net/about.asp不错的老师

问问上海初中数学哪里好 怎么才能学习好数学

4,沪教版初三数学知识点归纳

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。 九年级下册数学知识点归纳 圆 ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆内容提要☆ 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 6.与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.切线的性质(重点) 2.切线的判定定理(重点) 3.切线长定理 三、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切) 2.相切(交)两圆连心线的性质定理 3.两圆的公切线:⑴定义⑵性质 四、与圆有关的比例线段 1.相交弦定理 2.切割线定理 五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形) 2.三角形的外接圆、内切圆及性质 3.圆的外切四边形、内接四边形的性质 4.正多边形及计算 中心角:初中数学复习提纲 内角的一半:初中数学复习提纲(右图) (解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等) 六、一组计算公式 1.圆周长公式 2.圆面积公式 3.扇形面积公式 4.弧长公式 5.弓形面积的计算 方法 6.圆柱、圆锥的侧面展开图及相关计算 九年级上册数学单元知识点 第一章证明 一、等腰三角形 1、定义:有两边相等的三角形是等腰三角形。 2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”) 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”) 3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等) 4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证) 7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。 特殊的等腰三角形 等边三角形 1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。 (注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。 2、性质:⑴等边三角形的内角都相等,且均为60度。 ⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。 ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。 3、判定:⑴三边相等的三角形是等边三角形。 ⑵三个内角都相等的三角形是等边三角形。 ⑶有一个角是60度的等腰三角形是等边三角形。 ⑷有两个角等于60度的三角形是等边三角形。 初三 数学 学习方法 概念课 要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。 习题课 要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。 复习课 在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个 反思 性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的 措施 。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。 沪教版初三数学知识点归纳相关 文章 : ★ 初三数学知识点整理归纳 ★ 初三数学知识点考点归纳总结 ★ 初中数学知识点总结(沪科版) ★ 初三数学知识点归纳总结 ★ 初三上册数学知识点归纳有哪些 ★ 初三数学知识点上册总结归纳 ★ 初三数学知识点归纳 ★ 初三数学的知识点归纳 ★ 最新初三数学知识点总结大全 ★ 初三数学知识点整理

5,上海初中的数学难不难

今天的中考肯定会很难 因为是二期课改的第一次中考去年就很简单 40%初二学生都会做相对温州应该简单吧 毕竟上海的理科比外地弱
很难我学的就是二期课改就连老师也说比以前难很多
上海的题目比较灵活,是按80%送分10%有一定难度10%拉差距的比例来出的
我觉得还行,特别是大考我都可以考90多,平时我在班是属于中等的。
不难 1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好! 2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到笔记本上!保持高效率! 3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学! 4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精! 5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!! 总之,学习数学,不要怕难,不要怕累,不要怕问! 你能在这里问这个问题,说明你非常想把数学学好!相信你会成功的,加油吧!!!

6,谁能帮忙整理上海初中数学知识点谢谢

有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。有理数的乘法运算符号法则同号得正异号负,一项为零积是零。合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】 一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】 恒等式 解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量,初中数学口诀上海市同洲模范学校 宋立峰有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。有理数的乘法运算符号法则同号得正异号负,一项为零积是零。合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】 一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】 恒等式 解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量, 是与否。若有还要看取值,全体实数都要有。正比例函数是否,辨别需分两步走。一量表示另一量, 有没有。若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量, 是与否。若有还要看取值,全体实数都要有。正比例函数的图象与性质正比函数图直线,经过 和原点。K正一三负二四,变化趋势记心间。K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数 一次函数图直线,经过 点。K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数反比函数双曲线,经过 点。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线 直线、射线与线段直线射线与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段等积或比例线段,多种途径可以证。证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特殊情况去换元,得解验根是必然。解分式方程先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。列方程解应用题列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加辅助线学习几何体会深,成败也许一线牵。分散条件要集中,常要添加辅助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线段角位置变。已知线段中垂线,连接两端等线段。辅助线必画虚线,便与原图联系看。两点间距离公式同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。矩形的判定任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。菱形的判定任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。
我是西安人,但我希望能帮你. 你可按以下网络图整理 (代数式,单项式,多项式,整式,分式,二次根式) (一元一次方程及其应用) ---| 代数 (二元一次方程组及其应用) | (一元二次方程及其应用 | 方程 (三元一次方程组及其应用) |初中数学 (二元二次方程及其应用) ___| 变量之间关系 -----| 一次函数 | 函数初步 二次函数与曲线-----| 可能性与概率--------------------------| ( 不可能事件.必然事件)----确定事件-| | 概率 随机事件---------------------------| | 因式分解 统计学初步 不定方程 ------------------------------------------------------------------- (点.线.面)---------------| (直角坐标系) (平行线.相交线) | (极坐标系) | (四边形.) | (三角形) | 几何 (圆) | (相似形与全等形)------ | 数(负数.正数.0---有理数. 无理数---实数)
www.shmaths.com
文章TAG:上海上海市初中初中数学上海市初中数学

最近更新