首页 > 湖南 > 邵阳市 > 求值域的方法,数学中求值域有那些方法

求值域的方法,数学中求值域有那些方法

来源:整理 时间:2023-01-27 07:38:35 编辑:好学习 手机版

本文目录一览

1,数学中求值域有那些方法

函数的值域是由函数的定义域与对应关系确定的,因此,要求函数的值域,一般应先分析其定义域,不能简单地从函数关系来观察. 求函数的值域的方法很多,技巧性也很强,这里介绍几种最常见的基本方法. (1)观察法 一些简单的函数,常可以通过对函数的解析式进行变形,然后对其定义域和对应关系进行分析,即可获得其值域 (2)图象法 如果某些函数从解析式不易求出它的值域,而函数的图象又较易画出来,一般可以利用函数图象而直接求出其值域). (3)如果一个有理函数式y=f(x),通过适当变形可以化为关于x的一元二次方程.这时,由于该函数的定义域不是空集,即存在实数x是上述所得的关于x的一元二次方程的解.从而该方程的根的判别式Δ≥0.由此,求得y的取值范围,即函数的值域 此外,求函数值域的方法还有配方法、换元法、反函数法、不等式法,以及运用函数的单调性,有界性等.

数学中求值域有那些方法

2,这个求值域的怎么做

什么呢?反函数定义域就原函数值域,还有用这种方法求值域的?道理是有道理,但是这种方法不可行。。。这个题目,首先定义域是(-无穷,1/2]令 根号(1-2x)=t则:t>=0 且 x=(1-t^2)/2y=-t^2/2+t+3/2 (t>=0)开口向上的抛物线,对称轴在t=1 因而[0,1]上函数单调增,最小值在t=0取得,为1;最大值在 t=1取得,为2(1,+无穷)内函数单调减, 取值范围为(-无穷,2)所以,函数的值域为 (-无穷,2]
反函数法就是求出原函数的反函数,然后根据原函数的定义域求出值域。例如:y=(1+x)/x当x在区间[2,4]时的值域因为y=(1+x)/x所以x=1/(y-1),因为x在区间[2,4],所以1/(y-1)在区间[2,4]上,即可求出值域。 满意的话请及时点下【采纳答案】o(∩_∩)o 谢谢哈~

这个求值域的怎么做

3,求值域的方法要求简单明了

求值域必然要先知道定义域和运算方法,也就是我们所说的函数,用定义域的值直接运算即可得到值域,但是要注意函数在定义域中的某个点是否有意义。比如函数y=1/x,假设定义域为(-1,1)。显然x=0时y值是无穷大(即函数在x=0处无意义)。明白这一点后将定义域分成两部分,(-1,0)和(0,1),以此计算,1/(-1)=-1,1/(-0)(即数轴上0的左邻域)=负无穷,1/1=1,1/(+0)(即数轴上0的右邻域)=正无穷,所以本函数的值域为(负无穷,-1)U(1,正无穷)。其他函数以此类推。
二、函数的值域: 1.值域:函数值的集合叫做值域。 注意:必须用集合表示 。2.函数值域的求法: (1)观察法:由函数的定义域结合图象,或直观观察,准确地判断 函数值域的方法。 (2)最值法:对于闭区间上的连续函数,利用求函数的最大值和最 小值来求函数的值域的方法。 (3)判别式法:通过对二次方程的实根的判别求值域的方法。

求值域的方法要求简单明了

4,如何求函数值域方法

1.观察法用于简单的解析式。y=1-√x≤1,值域(-∞, 1]y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).2.配方法多用于二次(型)函数。y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1, +∞)y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)3. 换元法多用于复合型函数。通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。特别注意中间变量(新量)的变化范围。4. 不等式法用不等式的基本性质,也是求值域的常用方法。y=(e^x+1)/(e^x-1), (0<x<1).0<x<1,1<e^x<e, 0<e^x-1<e-1,1/(e^x-1)>1/(e-1),y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).5. 最值法如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].因此,求值域的方法与求最值的方法是相通的.6. 反函数法有的又叫反解法.函数和它的反函数的定义域与值域互换.如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.7. 单调性法若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b),f(a)]

5,老师求值域有哪些方法啊

呵呵在行本人,第一,上课的时候趁老师没有来,赶紧把门关上用凳子挡上他,还告诉你们班谁要开门谁王八蛋,看看你们班有几个王八蛋啊, 第二上课时用扫把,搁到门上面,老师一开门扫把肯定、砸到头, 第三,让老师在黑板上写不了字,弄块蜡,涂抹到黑板上,呵呵让老师干急死也写不出字来 本人在学校经常干而且还有很多.... 顺便教你个整同学的吧!!!你们老师有的时候让学生在黑板上超抄题,你们上就抄题,老师就不知道上哪去了,在那种枯燥乏味课堂时,让同学们高兴高兴,拿一包粉笔,分给你们班的同学分开几半那时候你们抄题的同学正在努力抄题,你们拿起自己的武器,数上一二三,就啪啪的往你们那个同学扔去,试试他有什么表情啊~~~呵呵...希望采纳
一般求函数的值域常有如下方法:(1)利用函数性质求解析式也就是根据题目条件的定义域和值域的范围,确定解析式的形式,这种方法常用于解决分段函数的问题。(2)配方法、换元法对于形如 y = ax + b + √(cx + d) 的函数,可以用换元法;对于含√(a^2 - x^2)结构的函数,可利用三角代换,转化为三角函数求值域。(3)反函数法、判别式法对于形如 y = (cx + d)/(ax + b) 的函数值域可用反函数法,也可用配凑法;对于形如 y = (ax^2 + bx + c)/(dx^2 + ex + f) 的函数值域常用判别式法,把函数转化成关于 x 的二次方程 F(x,y) = 0 ,通过方程有实根,判别式 △≥ 0 ,从而得到原函数的值域。但注意要讨论二次项系数为零和非零的两种情况。(4)不等式法、单调性法利用基本不等式 a + b ≥ 2√ab 求值域,注意“一正、二定、三取等”。即:a>0,b>0;a+b(或ab)为定值;取等号的条件。对于形如 y = ax + b + √(cx + d) 的函数,看 a 与 d 是否同号,若同号用单调性求值域,若异号则用换元法求值域。(5)数形结合法这个就不用我多说了吧,把已知问题转化为图像求最值或者范围的问题,灵活利用平面或空间几何学的性质,帮助求解。(6)导数法这个是最保险的,但是往往运算起来会比较麻烦。(7)抽象函数问题根据题目所给条件对问题进行转化,化繁为简。

6,函数怎样求值域都有哪 些方法

函数值域求法:1. 直接观察法:对于一些比较简单的函数,其值域可通过观察得到。2. 配方法:配方法是求二次函数值域最基本的方法之一。3. 判别式法:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。4. 反函数法;直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。5. 函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。6. 函数单调性法7. 换元法:通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。8. 数形结合法:其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。9. 不等式法:利用基本不等式 ,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。10. 一一映射法原理:因为 在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。11. 多种方法综合运用 总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
最常用的:1. 观察法:对于一些比较简单的函数,其值域可通过观察得到。2. 配方法:配方法是求二次函数值域最基本的方法之一。3. 函数单调性法4. 换元法:通过简单的换元把一个函数变为熟悉的函数5. 数形结合法6:利用均值不等式 7. 函数有界性法:
: y= (2^x-1)/!,哈哈) 例如;(2^x+1) 可化为 2^x=(y+1)/!;(y-1)>0 得y>1或 y<-1 7 换元法 8 判别式法 9 导数法我也刚刚复习到啊1 化为二次函数求最值 2 三角函数代换法 3 基本不等式 4 柯西不等式 5 根据几何意义求值 ①根据点到点的距离公式 ②根据斜率公式的特征 6 反函数法(规律自己归纳吧

7,如何求值域

一.观察法  通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。  例1:求函数y=3+√(2-3x) 的值域。  点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。  解:由算术平方根的性质,知√(2-3x)≥0,  故3+√(2-3x)≥3。  ∴函数的值域为 .  点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。  本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5.y,x∈N)的值域。 (答案:值域为:{0,1,2,3,4,5})二.反函数法  当函数的反函数存在时,则其反函数的定义域就是原函数的值域。  例2:求函数y=(x+1)/(x+2)的值域。  点拨:先求出原函数的反函数,再求出其定义域。  解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。 (答案:函数的值域为{y∣y<-1或y>1})三.配方法  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域  例3:求函数y=√(-x2+x+2)的值域。  点拨:将被开方数配方成完全平方数,利用二次函数的最值求。  解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]  ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域. (答案:值域为四.判别式法  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域,但只适用于定义域为R或R除去一两个点。  例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域。  点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。  解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)  当y≠2时,由Δ=(y-2)2-4(y-2)+(y-3)≥0,解得:2<y≤10/3  当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。 (答案:值域为y≤-8或y>0)。五.最值法  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。  例5:已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。  点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。  解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),  ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。  当x=-1时,z=-5;当x=3/2时,z=15/4。  ∴函数z的值域为{z∣-5≤z≤15/4}。  点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。  练习:若√x为实数,则函数y=x2+3x-5的值域为 ( ) A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)   (答案:D)。六.图象法  通过观察函数的图象,运用数形结合的方法得到函数的值域。  例6:求函数y=∣x+1∣+√(x-2)2 的值域。  点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。  解:原函数化为 -2x+1 (x≤1)  y= 3 (-1<x≤2)  2x-1(x>2)  它的图象如图所示。  显然函数值y≥3,所以,函数值域[3,+∞]。  点评:分段函数应注意函数的端点。利用函数的图象  求函数的值域,体现数形结合的思想。是解决问题的重要方法。  求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。七.单调法  利用函数在给定的区间上的单调递增或单调递减求值域。  例1:求函数y=4x-√1-3x(x≤1/3)的值域。  点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。  解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x   在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。  点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。  练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})八.换元法  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。  例2:求函数y=x-3+√2x+1 的值域。  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。  解:设t=√2x+1 (t≥0),则  x=1/2(t2-1)。  于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.  所以,原函数的值域为{y|y≥-7/2}。  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。  练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}九.构造法  根据函数的结构特征,赋予几何图形,数形结合。  例3:求函数y=√x2+4x+5+√x2-4x+8 的值域。  点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。  解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22  作一个长为4、宽为3的矩形ABCD,再切割成12个单位  正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,  KC=√(x+2)2+1 。  由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共  线时取等号。  ∴原函数的知域为{y|y≥5}。  点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。  练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})十.比例法  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。  例4:已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。  点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。  解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)  ∴x=3+4k,y=1+3k,  ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。  当k=-3/5时,x=3/5,y=-4/5时,zmin=1。  函数的值域为{z|z≥1}.  点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。  练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})十一.利用多项式的除法  例5:求函数y=(3x+2)/(x+1)的值域。  点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。  解:y=(3x+2)/(x+1)=3-1/(x+1)。  ∵1/(x+1)≠0,故y≠3。  ∴函数y的值域为y≠3的一切实数。  点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。  练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)十二.不等式法  例6:求函数Y=3x/(3x+1)的值域。  点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。  解:易求得原函数的反函数为y=log3[x/(1-x)],  由对数函数的定义知 x/(1-x)>0  1-x≠0 解得,0<x<1。  ∴函数的值域(0,1)。  点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。  以下供练习选用:求下列函数的值域  1.Y=√(15-4x)+2x-5;({y|y≤3})  2.Y=2x/(2x-1)。 (y>1或y<0)   注意变量哦~
一.观察法  通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。  例1:求函数y=3+√(2-3x) 的值域。  点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。  解:由算术平方根的性质,知√(2-3x)≥0,  故3+√(2-3x)≥3。  ∴函数的值域为 .  点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。  本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5.y,x∈N)的值域。 (答案:值域为:{0,1,2,3,4,5})二.反函数法  当函数的反函数存在时,则其反函数的定义域就是原函数的值域。  例2:求函数y=(x+1)/(x+2)的值域。  点拨:先求出原函数的反函数,再求出其定义域。  解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。 (答案:函数的值域为{y∣y<-1或y>1})三.配方法  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域  例3:求函数y=√(-x2+x+2)的值域。  点拨:将被开方数配方成完全平方数,利用二次函数的最值求。  解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]  ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域. (答案:值域为四.判别式法  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域,但只适用于定义域为R或R除去一两个点。  例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域。  点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。  解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)  当y≠2时,由Δ=(y-2)2-4(y-2)+(y-3)≥0,解得:2<y≤10/3  当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。 (答案:值域为y≤-8或y>0)。五.最值法  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。  例5:已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。  点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。  解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),  ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。  当x=-1时,z=-5;当x=3/2时,z=15/4。  ∴函数z的值域为{z∣-5≤z≤15/4}。  点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。  练习:若√x为实数,则函数y=x2+3x-5的值域为 ( ) A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)   (答案:D)。六.图象法  通过观察函数的图象,运用数形结合的方法得到函数的值域。  例6:求函数y=∣x+1∣+√(x-2)2 的值域。  点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。  解:原函数化为 -2x+1 (x≤1)  y= 3 (-1<x≤2)  2x-1(x>2)  它的图象如图所示。  显然函数值y≥3,所以,函数值域[3,+∞]。  点评:分段函数应注意函数的端点。利用函数的图象  求函数的值域,体现数形结合的思想。是解决问题的重要方法。  求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。七.单调法  利用函数在给定的区间上的单调递增或单调递减求值域。  例1:求函数y=4x-√1-3x(x≤1/3)的值域。  点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。  解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x   在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。  点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。  练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})八.换元法  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。  例2:求函数y=x-3+√2x+1 的值域。  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。  解:设t=√2x+1 (t≥0),则  x=1/2(t2-1)。  于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.  所以,原函数的值域为{y|y≥-7/2}。  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。  练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}九.构造法  根据函数的结构特征,赋予几何图形,数形结合。  例3:求函数y=√x2+4x+5+√x2-4x+8 的值域。  点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。  解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22  作一个长为4、宽为3的矩形ABCD,再切割成12个单位  正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,  KC=√(x+2)2+1 。  由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共  线时取等号。  ∴原函数的知域为{y|y≥5}。  点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。  练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})十.比例法  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。  例4:已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。  点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。  解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)  ∴x=3+4k,y=1+3k,  ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。  当k=-3/5时,x=3/5,y=-4/5时,zmin=1。  函数的值域为{z|z≥1}.  点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。  练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})十一.利用多项式的除法  例5:求函数y=(3x+2)/(x+1)的值域。  点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。  解:y=(3x+2)/(x+1)=3-1/(x+1)。  ∵1/(x+1)≠0,故y≠3。  ∴函数y的值域为y≠3的一切实数。  点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。  练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)十二.不等式法  例6:求函数Y=3x/(3x+1)的值域。  点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。  解:易求得原函数的反函数为y=log3[x/(1-x)],  由对数函数的定义知 x/(1-x)>0  1-x≠0 解得,0<x<1。  ∴函数的值域(0,1)。  点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。  以下供练习选用:求下列函数的值域  1.Y=√(15-4x)+2x-5;({y|y≤3})  2.Y=2x/(2x-1)。 (y>1或y<0)   注意变量哦~
函数值域的几种常见方法1.直接法:利用常见函数的值域来求一次函数y=ax+b(a 0)的定义域为r,值域为r;反比例函数 的定义域为二次函数 的定义域为r,当a>0时,值域为例1.求下列函数的值域① y=3x+2(-1 x 1) ② ③ ④ 解:①∵-1 x 1,∴-3 3x 3,∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]②∵ ∴ 即函数 的值域是 ③ ④当x>0,∴ = ,当x<0时, =- ∴值域是 [2,+ ).(此法也称为配方法)函数 的图像为:2.二次函数比区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:① ; 解:∵ ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域r,∴x=2时,ymin=-3 ,无最大值;函数的值域是②∵顶点横坐标2 [3,4],当x=3时,y= -2;x=4时,y=1; ∴在[3,4]上, =-2, =1;值域为[-2,1].③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,∴在[0,1]上, =-2, =1;值域为[-2,1].④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,∴在[0,1]上, =-3, =6;值域为[-3,6].注:对于二次函数 ,⑴若定义域为r时,①当a>0时,则当 时,其最小值 ;②当a<0时,则当 时,其最大值 .⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,再比较 的大小决定函数的最大(小)值.②若 [a,b],则[a,b]是在 的单调区间内,只需比较 的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.3.判别式法(△法):判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论 例3.求函数 的值域方法一:去分母得 (y-1) +(y+5)x-6y-6=0 ①当 y11时 ∵x?r ∴△=(y+5) +4(y-1)×6(y+1) 0由此得 (5y+1) 0 检验 时 (代入①求根)∵2 ? 定义域 再检验 y=1 代入①求得 x=2 ∴y11综上所述,函数 的值域为 方法二:把已知函数化为函数 (x12)∵ x=2时 即 说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.4.换元法例4.求函数 的值域解:设 则 t 0 x=1- 代入得 5.分段函数例5.求函数y=|x+1|+|x-2|的值域. 解法1:将函数化为分段函数形式: ,画出它的图象(下图),由图象可知,函数的值域是解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+ ]. 如图两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.
文章TAG:求值域的方法求值值域方法

最近更新

  • 买英语怎么说,买用英语怎么说

    买用英语怎么说buy祝你学习进步O(∩_∩)O哈!如果对你有所帮助,还望采纳O(∩_∩)O哈!如还有不懂的,还可以继续追问哦(^o^)/~2,买东西的英文怎么说买东西Buythin ......

    邵阳市 日期:2023-05-06

  • 蘑菇做法大全,秘制五花肉和蘑菇的做法

    1.准备材料,五花肉切片,洋葱切段,辣椒切段,蘑菇撕成小块,柿子切小块,5、柿子汁,倒蘑菇,加一勺(平时在家煲汤用)生抽,一勺生抽,适量盐,5.油温七成热后,放入蘑菇,然后转小火慢 ......

    邵阳市 日期:2023-05-06

  • 复查申请书范文,中考成绩复查申请怎么写请告诉我急谢谢

    中考成绩复查申请怎么写请告诉我急谢谢不太清楚应该是去学校教务处问吧2,关于考试成绩复查的申请怎么写此事要学校开证明上交所在地招生办有招生办上交省办3,单位需要的计量设备到期了需要填 ......

    邵阳市 日期:2023-05-06

  • css透明度,Css透明度如何实现

    Css透明度如何实现CSS透明度设置方法filter:alpha(opacity=50);/*IE,透明度50%*/-moz-opacity:0.5;/*Firefox,透明度50 ......

    邵阳市 日期:2023-05-06

  • 练字的字帖,练字用什么字帖好呢

    练字用什么字帖好呢初学者写正楷用柳公权、颜真卿、欧阳询的帖行书用王羲之的帖2,用什么字帖练字效果比较好求介绍啊找一些自己比较喜欢的字帖..我自己用的是“好字通”字帖,里面有书法教程 ......

    邵阳市 日期:2023-05-06

  • 大蒜的种植,大蒜怎么种植

    大蒜怎么种植大蒜头扒开,把蒜瓣尖的一头朝上直接按在土中,注一定要尖头朝上,蒜瓣外表皮不能扒不然没用,施一点植物用肥,尿素什么的都行,不要多,浇水,浇水,浇水看情况施肥记得加水一般有 ......

    邵阳市 日期:2023-05-05

  • 花的懒人料理,简单省时快餐食谱推荐

    准备200克肥牛片,半个洋葱切块,米饭提前蒸熟;2.调一勺酱,1勺酱油,1勺烧纸,1勺米酒;3.准备一个小砂锅,倒入半锅水,放入洋葱煮至变色,放入肥牛片,煮1分钟,撇去浮沫;4.倒 ......

    邵阳市 日期:2023-05-05

  • 企业字号,67涨知识企业字号与企业名称有什么区别

    67涨知识企业字号与企业名称有什么区别企业名称包括四部分:行政区划+字号+行业特点+组织形式。例如:XX省+百斯特+酒类+经销部也就是说,字号是企业名称的一部分。PS:::不懂还可 ......

    邵阳市 日期:2023-05-05