首页 > 新疆 > 克拉玛依 > 建模思想,化学平衡中的建模思想

建模思想,化学平衡中的建模思想

来源:整理 时间:2023-09-10 16:34:32 编辑:好学习 手机版

1,化学平衡中的建模思想

等式左边等于等式右边一般来说只要熟悉了化学反应的条件和结果,让等式成立,就能解题了.

化学平衡中的建模思想

2,建模思想和模型思想的区别

主要是概念上的区别:建模思想:建模思想是一种运用数学建模去解决问题的思想。为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象。模型思想:模型思想即数学中建立模型的思想,为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。建模过程:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述题(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。

建模思想和模型思想的区别

3,数学建模的主要思想是什么怎样拥有建模的理念

不会吧
数学建模就是构造数学模型的过程,即用数学的语言--公式、符号、图表等刻画和描述一个实际问题,然后经过数学的处理--计算、迭代等得到定量的结果,以供人们作分析、预报、决策和控制。而所谓的数学模型,是关于部分现实世界为一定目的而作的抽象、简化的数学结构。简言之,数学模型是用数学术语对部分现实世界的描述。
建模主要copy思想是:理论结合实际,把实际的事物抽象成数学模型,再利用所学的理论解决问题。例如,你去果园摘苹果。把你看百作是一运动点,苹果树为各个固定的点,如何运动才能节省度劳动量?可以考虑任何因素,身体因素、树结果多少等等。

数学建模的主要思想是什么怎样拥有建模的理念

4,什么是建模思想

数学建模思想,本质土是要培养学生灵活运用数学知识解决实际中的问题的能力.在这一过程中,我们需要培养学生的抽象思维、简化思维、批判性思维等数学能力. 1数学建模需要抽象思维 分析上面模型的建立与求解过程,我们可以发现,解决问题时,离不开抽象思维,离不开对高等数学基本概念的深入理解和透彻分析. 当解决问题1时,我们紧密结合“绝对涌出量”与“相对涌出量”的概念,解剖概念所包含的每一点信息,找到了“绝对涌出量”与“相对涌出量”的计算公式,从而建立了数学模型I. 可见,我们要把纷繁芜杂的实际问题,归结到高等数学的相关概念和定义之中,利用定义找到计算公式,从而建立数学模型.在这种层层分析的过程中,抽象思维起到了关键性作用.正是这种层层分析,才使得复杂问题得以解决.所以说,数学建模需要抽象思维. 2数学建模需要简化思维 所谓简化思维,就是把复杂问题进行简化,进而使本质凸显.就像进行X光透视一样,祛除血肉,尽剩骨架.只有迅速抓住主要矛盾,舍弃次要因素,找到问题的本质,才能“看透”问题的本质. 例如,鉴别该矿井属于“低瓦斯矿井”还是“高瓦斯矿井”的问题,本质上是要我们先求出“绝对涌出量”与“相对涌出量”,然后把它们与标准值比大小;煤矿发生爆炸的可能性,实际上是概率问题;该煤矿所需要的最佳(总)通风量,实质上就是最优问题,即带约束条件的线性规划问题. 这种简化思维具有深刻性的特点.它并不是天生就具有的,可以经过精心培养而形成,经过刻苦锻炼而强化.在高等数学的教学过程中,需要培养学生的这种深层次的洞察能力. 3数学建模需要批判性思维 在数学模型建立、求解完成后,我们需要对所得的结果进行分析,还需要对所建立的数学模型进行评价,并及时对模型进行改进,以取得最佳结果.同时,我们还要指出所建模型的实际意义,并努力加以推广.这些环节,都需要良好的批判性思维. 在高等数学的教学过程中,我们需要培养学生的批判性思维.在每道题解完后,我们都要进行这种解后反思的训练,不断地提问:结果对吗?符合实际吗?该解法的优缺点在哪里?还有更好的解法吗?如何改进?能够推广吗?……在这种训练的过程中,学生的批判性思维将得到强化和提高. 参考文献: [1]姜启源.数学实验与数学建模[J].数学的实践与认识,2001(5) [2]李大潜.将数学建模思想融入数学类主干课程[J].工程数学学报,2005(8) [3]耿秀荣.煤矿瓦斯和煤尘的监测与控制模型[J].桂林航天工业高等专科学校学报,2006(4) [4]高招连,等.煤矿瓦斯和煤尘的监测与控制模型[J].2006年全国大学生数学建模竞赛广西赛区经验交流及优秀论文选,2007(1)

5,数学建模思想方法有哪些

数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。 数学建模的过程 1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。 数学建模的意义是: 1、培养创新意识和创造能力 2、训练快速获取信息和资料的能力 3、锻炼快速了解和掌握新知识的技能 4、培养团队合作意识和团队合作精神 5、增强写作技能和排版技术 6、荣获国家级奖励有利于保送研究生 7、荣获国际级奖励有利于申请出国留学

6,如何体现模型思想

数学模型:采用形式化的数学语言,抽象地、概括地表征研究对象的主要数学特征和关系的一种数学结构;数学建模:通过建立数学模型的方法来求得问题解决的数学活动过程;模型思想:模型思想本质上就是以数学的眼光看待外部世界、应用数学解决外部世界问题的思想。它强调了数学与外部世界的联系。数学模型有两个主要特点:其一,它是经过抽象舍去对象的一些非本质属性以后所形成的一种纯数学关系结构;其二,这种结构是借助数学符号来表示,并能进行数学操作的结构。在初中代数内容里,方程、不等式、函数都是的重要数学模型。数学建模的过程本质上就是“数学化”的过程。模型思想则体现了应用数学解决问题的意识、想法。《标准》中多处提到模型思想:经历数与代数的抽象、运算与建模过程 (数与代数总目标);通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型思想;体会方程是刻画现实世界数量关系的有效模型(代数学段目标);结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程。(“综合与实践”内容标准)由上面的介绍我们可以发现,从数学活动的角度看,帮助学生初步形成模型思想的核心步骤是“数学建模”活动。而这一活动过程进可以简化为以下三个环节:1. 从现实生活或具体情境中抽象出数学问题;(即发现和提出问题是数学建模的起点)2. 用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律;(即学生要通过观察、分析、抽象、概括、选择、判断等数学活动,完成模式构建,得到模型)。这是建模最重要的一个环节;3. 求解模型,获得结果,并用此结果去解释、讨论它在现实问题中的意义。这样的三个环节在方程(组)、不等式(组)、函数的教学过程中都应当得到体现。在帮助学生形成模型思想的过程中,应当注意:1. 模型思想需要教师在教学中逐步渗透和引导学生不断感悟2. 使学生经历“问题情境——建立模型——求解验证”的数学活动过程3. 采用多种学习方式实施“数学建模”活动要使学生真正对模型思想有所感悟,需要经历一个长期的过程,在这一过程中,学生总是从相对简单到相对复杂,相对具体到相对抽象,逐步积累经验,掌握建模方法,逐步形成运用模型去进行数学思维的习惯。教学过程中要引导学生运用函数、不等式(组)、方程“组”、几何图形、统计表格等分析表达现实问题,解决现实问题。问题情境——建立模型——求解验证活动过程可以结合相关课程内容有机进行。比如,关于方程的教学,过去我们是从概念到概念,强调的是方程定义、类型、解法、同解性讨论等等比较“纯粹”的知识、技能,而现在,我们可以让学生从丰富多样的现实情境中,抽象出“方程”这个模型,从而求解具体问题。其过程如下:

7,数学教学中如何培养学生的建模思想

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。
在新课标实施不断深化的当下,小学数学教学的首要目标便是培养学生的模型思想.数学知识对于小学生而言显得枯燥乏味,为了学生可以对数学知识有更形象化的理解及掌握,从而激发学生对于数学知识的学习热情,提升数学教学的有效率培养学生的模型思想尤为重要.
文章TAG:建模思想化学化学平衡建模思想

最近更新