首页 > 河北 > 邢台市 > 幂函数知识点,幂函数的知识点有哪些

幂函数知识点,幂函数的知识点有哪些

来源:整理 时间:2023-03-08 19:36:43 编辑:好学习 手机版

1,幂函数的知识点有哪些

一般地,形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。而指数函数的一般形式为y=a^x(a>0且≠1) (x∈R). 它是初等函数中的一种。它是定义在实数域上的单调、下凸、无上界的可微正值函数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。所以幂函数不是指数函数也不是对数函数

幂函数的知识点有哪些

2,幂函数知识点归纳有哪些

幂函数知识点如下:1、一般来说,y=xα (α是有理数)的函数,即以底为参数,以幂为从属变量,以指数为常数的函数称为幂函数。2、根据幂次函数的奇偶性,可以使图象经过二、三象限。若幂函数为奇数,其图象就会经过第三个象限。3、如果a=p/q,q和p都是整数,则x^(p/q)=q次根符号(x的p乘),如果q是奇数,则函数的定义域是R,如果q是偶数,函数的定义域是[0,+co)。4、当x是不同的值时,在x大0时,该函数的值范围总是比0的实际值大。当x小于0时,只有一个同时q是奇数,一个函数的值是一个非零的实数。如果a是一个正的,那么0就会进入到这个函数的数值范围中。5、排除0和负数两种可能性,即x>0,a可以是任意实数;排除此可能性О、也就是说,x><零和零的所有实数,q不是偶数;排除负数的可能性。

幂函数知识点归纳有哪些

3,高中数学必修一知识点归纳

1.幂函数 (1)定义形如y=xα的函数叫幂函数,其中α为常数,在中学阶段只研究α为有理数的情形 2.指数函数和对数函数 (1)定义 指数函数,y=ax(a>0,且a≠1),注意与幂函数的区别. 对数函数y=logax(a>0,且a≠1). 指数函数y=ax与对数函数y=logax互为反函数. (2)指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)的图象和性质如表1-2. (3)指数方程和对数方程 指数方程和对数方程属于超越方程,在中学阶段只要求会解一些简单的特殊类型指数方程和对数方程,基本思想是将它们化成代数方程来解.其基本类型和解法见表1-3.
1.幂函数 (1)定义形如y=xα的函数叫幂函数,其中α为常数,在中学阶段只研究α为有理数的情形 2.指数函数和对数函数

高中数学必修一知识点归纳

4,幂函数的相关知识

定义:一般地,形如y=xa(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x、y=x2、y=1/x(注:y=1/x=x-1)等都是幂函数。性质:所有的幂函数在(-∞,+∞)上都有各自的定义,并且图像都过点(1,1)。(1)当α>0时,幂函数y=xa有下列性质:a、图像都通过点(1,1)(0,0) ;b、在第一象限内,函数值随x的增大而增大;c、在第一象限内,α>1时,图像开口向上;0<1时,图像开口向右; d、函数的图像通过原点,并且在区间[0,+∞)上是增函数。 (2)当α<0时,幂函数y=xa有下列性质: a、图像都通过点(1,1); b、在第一象限内,函数值随x的增大而减小,图像开口向上; c、在第一象限内,当x从右趋于原点时,图像在y轴上方趋向于原点时,图像在y轴右方无限接近y轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴。 (3)当α=0时,幂函数y=xa有下列性质: a、y=x0是直线y=1去掉一点(0,1) 它的图像不是直线。

5,幂函数的定义是什么

幂函数的一般形式为y=x^a。   如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。   对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:   首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。   总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:   如果a为任意实数,则函数的定义域为大于0的所有实数;   如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。   在x大于0时,函数的值域总是大于0的实数。   在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。   而只有a为正数,0才进入函数的值域。   由于x大于0是对a的任意取值都有意义的,   必须指出的是,当x<0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)、[x^(c/d)]^(a/b)、x^(ac/bd)这三者相等吗?若p/q是ac/bd的既约分数,x^(ac/bd)与x^(p/q)以及x^(kp/kq)(k为正整数)又能相等吗?也就是说,在x<0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决幂函数值的唯一性问题,但米指数的运算法则较难维系;另一种观点则认为,直接取消x<0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。   因此下面给出幂函数在第一象限的各自情况.   可以看到:   (1)所有的图形都通过(1,1)这点。   (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。   (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。   (4)当a小于0时,a越小,图形倾斜程度越大。   (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。   (6)显然幂函数无界限。
文章TAG:幂函数知识点幂函数知识知识点

最近更新