首页 > 安徽 > 蚌埠市 > 数学公式初中,初中数学公式大全

数学公式初中,初中数学公式大全

来源:整理 时间:2022-12-24 17:05:20 编辑:好学习 手机版

本文目录一览

1,初中数学公式大全

没有详细的公式,高中才有
买个小册子吧。就几块钱的。

初中数学公式大全

2,求初中数学的全部公式

输入太烦了楼主到 http://www.edu3g.com/math/expressions/czds/index2.html这里直接copy下来就可以

求初中数学的全部公式

3,初中所有数学公式

1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时全等三角形 边边边 边角边 角边角 角角边 斜边直角边 全等三角形对应边相等,对应角相等 轴对称 等腰三角形 三线合一 等边三角形 实数没什么好讲的 一次函数 y=kx y=kx+b (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a-b)=a2-b2

初中所有数学公式

4,数学初中所有公式

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等  40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 一:整式的运算 公式: 1单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 2一个多项式中,次数最高的项的次数,叫做这个多项式的次数。 3整式的加减法,实质就是将整式中的同类项合并,如果有括号应先去括号,再合并同类项。 4同底数幂相除,底数不变,指数相减。 二:平行线与相交线 公式: 余角和补角定律:1如果两个角的和是直角,称这两个角互为余角。如果两个角的和是直角,称这两个角互为补角。 三:生活中的数据 1有效数字:对于一个近似数,从左边起第一个不是零的数起,到精确到的数位止,所有的数字叫这个数的有效数字。 2平行线像这样的,不会相交的两条直线,就是互相平行的两条直线,简称平行线。4四边形:两组对边平行。 3统计图:1条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些纸条按一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。 条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。 2折线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。折线统计图分单式或复式 3扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形 的大小表示各部分数量占总数的百分数。通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.作用:能清楚地反映书各部分数同总数之间的关系.扇形面积与其对应的圆心角的关系是:扇形面积越大,圆心角的度数越大。扇形面积越小,圆心角的度数越小。扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比*360度扇形统计图还可以画成圆柱形的。 四:三角形 三角形一公有三种,锐角三角形:并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。直角三角形:有一个角为90度的三角形,就是直角三角形。钝角三角形:有一个角是钝角的三角形叫钝角三角形。任意一个三角形,最多有三个锐角;最多有一个钝角;最多有一个直角。 一个三角形有三条中线,并且都在三角形的内部,相交于一点。三角形的中线是一条线段。
= =还不如去买一本数学公式定律吧 6.80元 还带初三的

5,初三数学函数所有的公式

一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。 顶点式:y=a(x-h)2+k或y=a(x+m)2+k (两个式子实质一样,但初中课本上都是第一个式子) 交点式(与x轴):y=a(x-x1)(x-x2) 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大。) 二次函数表达式的右边通常为二次。 x是自变量,y是x的二次函数 x1,x2=[-b±根号下(b^2-4ac)]/2a(即一元二次方程求根公式)[编辑本段]二次函数的图像 在平面直角坐标系中作出二次函数y=x的平方;的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像[编辑本段]抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点p。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点p,坐标为p ( -b/2a ,(4ac-b2)/4a ) 当-b/2a=0时,p在y轴上;当δ= b2-4ac=0时,p在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号 当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 δ= b2-4ac>0时,抛物线与x轴有2个交点。 δ= b2-4ac=0时,抛物线与x轴有1个交点。 _______ δ= b2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b2-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0) 7.定义域:r 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b2)/4a); ⑷δ=b2-4ac, δ>0,图象与x轴交于两点: ([-b-√δ]/2a,0)和([-b+√δ]/2a,0); δ=0,图象与x轴交于一点: (-b/2a,0); δ<0,图象与x轴无交点; ②y=a(x-h)2+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b2)/4a); ③y=a(x-x1)(x-x2)[交点式] a≠0,此时,x1、x2即为函数与x轴的两个交点,将x、y代入即可求出解析式(一般与一元二次方程连用)。[编辑本段]二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2; +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax^2; y=ax^2;+k y=a(x-h)^2; y=a(x-h)^2+k y=ax^2+bx+c 顶点坐标 (0,0) (0,k) (h,0) (h,k) (-b/2a,sqrt[4ac-b^2;]/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到. 当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象; 当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)2+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a). 3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小. 4.抛物线y=ax^2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b^2-4ac>0,图象与x轴交于两点a(x?,0)和b(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的两根.这两点间的距离ab=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-a |(a为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax^2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
函数公式
y=kx(k≠0) y=kx+b(k≠0) y=k/x(k≠0) y=ax^2+bx+c(a≠0)
第八章 函数及其图象 ★重点★正、反比例函数,一次、二次函数的图象和性质。 ☆ 内容提要☆ 一、平面直角坐标系 1.各象限内点的坐标的特点 2.坐标轴上点的坐标的特点 3.关于坐标轴、原点对称的点的坐标的特点 4.坐标平面内点与有序实数对的对应关系 二、函数 1.表示方法:⑴解析法;⑵列表法;⑶图象法。 2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有 意义。 3.画函数图象:⑴列表;⑵描点;⑶连线。 三、几种特殊函数 (定义→图象→性质) 1. 正比例函数 ⑴定义:y=kx(k≠0) 或y/x=k。 ⑵图象:直线(过原点) ⑶性质:①k>0,…②k<0,… 2. 一次函数 ⑴定义:y=kx+b(k≠0) ⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。 ⑶性质:①k>0,…②k<0,… ⑷图象的四种情况: 3. 二次函数 ⑴定义: 特殊地, 都是二次函数。 ⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。 ⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。 4.反比例函数 ⑴定义: 或xy=k(k≠0)。 ⑵图象:双曲线(两支)—用描点法画出。 ⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。 四、重要解题方法 1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图: 2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。 六、应用举例(略) ☆ 内容提要☆ 一、三角函数 1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= . 2. 特殊角的三角函数值: 0° 30° 45° 60° 90° sinα cosα tgα / ctgα / 3. 互余两角的三角函数关系:sin(90°-α)=cosα;… 4. 三角函数值随角度变化的关系 5.查三角函数表 二、解直角三角形 1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 2. 依据:①边的关系: ②角的关系:A+B=90° ③边角关系:三角函数的定义。 注意:尽量避免使用中间数据和除法。 三、对实际问题的处理 1. 俯、仰角: 2.方位角、象限角: 3.坡度: 4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。希望能帮到你哈...
文章TAG:数学公式初中数学数学公式公式

最近更新

  • 腾讯客服中心,腾讯客服电话多少

    腾讯客服电话多少2,腾讯客服是多少腾讯客户服务中心腾讯旗下1,腾讯客服电话多少联系客户服务中心Email:service@tencent.com客服电话:0755-83765566 ......

    蚌埠市 日期:2023-05-06

  • 吃什么食物补肝,哪些食物补肝效果好

    哪些食物补肝效果好病情分析:,您好,食物主要有枸杞、核桃、花生、大枣、桂圆、蜂蜜、虾、鱼、肉、蛋等,意见建议:,可以参考一下{0}2,吃什么补肝补肝的食物很多,以下推荐些常见的,洋 ......

    蚌埠市 日期:2023-05-06

  • 动脑筋的题目,急一个动脑筋的题目

    急一个动脑筋的题目2,数学动脑筋题目1,急一个动脑筋的题目谁说是一人九圆当老板退五圆只收25时应该25除3等于没人平均8.3333333…一人再退一圆是9.33333…乘3等28加 ......

    蚌埠市 日期:2023-05-06

  • 气滞胃痛颗粒的功效与作用,气滞胃痛颗粒有什么好

    气滞胃痛颗粒有什么好各有各的好。一个更偏向于脾胃的运化,而一个更偏向于疏通经血,打通脉络。二者的功能并不是完全相同的。华源气滞胃痛颗粒¥23.50气滞胃痛颗粒是胃痛类常用的非处方中 ......

    蚌埠市 日期:2023-05-06

  • 被虱子咬了的症状,被虱子咬了是什么样的症状啊

    被虱子咬了是什么样的症状啊第一次回答可获2痒加红肿啊,如果真是虱子咬的关系到不大,涂点消肿的即可。跟蚊子咬的样子差不多,又痒又有小包肿起,搽点花露水之类的,既止痒又清凉!!2,被虱 ......

    蚌埠市 日期:2023-05-06

  • 可能性的英文,可能的英文

    可能的英文可能_百度翻译[词典]maybe;possible;probably;probable;perhaps;[例句]他可能在教室里。Maybeheisintheclassro ......

    蚌埠市 日期:2023-05-06

  • 启迪的近义词,启迪的近义词是什么

    启迪的近义词是什么启示启发启蒙{0}2,启迪的近义词是什么呢启发[qǐfā]生词本基本释义详细释义1.开导其心,使之领悟2.阐明;发挥3.掀开覆盖物;暴露近反义词近义词启示启蒙启发 ......

    蚌埠市 日期:2023-05-06

  • 看美女图片,找漂亮的图片

    找漂亮的图片www.mm5m.comwww.mntt.com美女贴图.你自己去找搞笑的去www.igogo8.com里面有搞笑的.QQ表情.种类搞笑证件.{0}2,清纯美眉的图片到 ......

    蚌埠市 日期:2023-05-06