首页 > 新疆 > 和田地区 > 整式的乘法教案,八上数学整式的乘除

整式的乘法教案,八上数学整式的乘除

来源:整理 时间:2023-08-05 22:22:24 编辑:好学习 手机版

本文目录一览

1,八上数学整式的乘除

由题知a+2b=5 3a+4b=11解得 a=1,b=2a+b=3a的2007次方·b3=8

八上数学整式的乘除

2,初一数学整式的乘法

结果是32×10^9,化成科学计数法应该是3.2×10^10
3.2*10的10次方
科学计数法应该是3.2 ×10⒑

初一数学整式的乘法

3,整式的乘法初一下学期

解;第一个剩以3的;3X^2+3X-3=0 两边同时加5的结果 所以他的答案为5 用第一个可的;M^3=M-M^2 带如第二个的;M^+M+2010 因为M^2+M-1=O 所以M^2+M+2010=2011

整式的乘法初一下学期

4,求整式的乘法复习课教案

整式的乘法 同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式: (a十b)(a一b)=a2-b2 (a±b)2=a2±2ab+b2 (a±b)(a2±ab+ b2)=a3±b3 具体要求: (1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。 (2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。 (3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。 (4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。
同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式: (a十b)(a一b)=a2-b2 (a±b)2=a2±2ab+b2 (a±b)(a2±ab+ b2)=a3±b3 具体要求: (1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。 (2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。 (3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。 (4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的
整式的乘法同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式:(a十b)(a一b)=a2-b2(a±b)2=a2±2ab+b2(a±b)(a2±ab+b2)=a3±b3具体要求:(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。

5,整式的乘法公式讲解

(a+b)(a+b)=(a+b)^2=a^2+2ab+b^2 或者 (a-b) (a-b)=(a-b)^2=a^2-2ab+b^2 归纳 这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。 我们通常表示为: (a±b)^2=a^2±2ab+b^2 注: 通常a,b是表示一个整体的代数式,不一定是数,例如:[(3x-y)-(2x+2y)][(3x-y)+(2x+2y)]=5x^2+6xy+y^2 [编辑本段]常见错误 完全平方公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误; (错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难于掌握。 [编辑本段]学习方法及例题 一、理解公式左右边特征 (一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性; (二)学会用文字概述公式的含义: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. (三)这两个公式的结构特征是: 1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍; 2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内); 3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式. (四)两个公式的统一: 因为 所以两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。 二、把握运用公式四步曲: 1、“察”:计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用相应乘法法则进行计算. 2、“导”:正确地选用完全平方公式,关键是确定式子中a、b分别表示什么数或式. 3、“算”:注意每步的运算依据,即各个环节的算理。 4、“验”:完成运算后学会检验,既回过头来再反思每步的计算依据和符号等各方面是否正确无误,又可通过多项式的乘法法则进行验算,确保万无一失。 三、掌握运用公式常规四变 (一)、变符号: 例1:运用完全平方公式计算: (1) (2) 分析:本例改变了公式中a、b的符号,处理方法之一:把两式分别变形为再用公式计算(反思得:);方法二:把两式分别变形为:后直接用公式计算;方法三:把两式分别变形为:后直接用公式计算(此法是在把两个公式统一的基础上进行,易于理解不会混淆); (二)、变项数: 例2:计算: 分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,可先变形为或或者,再进行计算. (三)、变结构 例3:运用公式计算: (1)(x+y)·(2x+2y); (2)(a+b)·(-a-b); (3)(a-b)·(b-a) 分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即 (1)(x+y)·(2x+2y)=2(x+y)?; (2)(a+b)·(-a-b)=-(a+b)?; (3)(a-b)·(b-a)=-(a-b)? (四)、简便运算 例4:计算:(1)9992(2)100.12 分析:本例中的999接近1000,100.1接近100,故可化成两个数的和或差,从而运用完全平方公式计算。即:(1)。 四、学会公式运用中三拓展 1、公式的混用 例5:计算: (l)(x+y+z)(x+y-z) (2)(2x-y+3z)(y-3z-2x) 分析:此例是三项式乘以三项式,特点是:有些项相同,另外的项互为相反数。故可考虑把相同的项和互为相反数的项分别结合构造成平方差公式计算后,再运用完全平方公式等计算。即:(1)(x+y+z)(x+y-z)=[(x+y)+z][(x+y)-z]=… (2)(2x-y+3z)(y-3z+2x)=[2x-(y-3z)][(2x+(y-3z)]=…2、公式的变形: 熟悉完全平方公式的变形式,是相关整体代换求知值的关键。 例6:已知实数a、b满足(a+b)2=10,ab=1。求下列各式的值: (1)a2+b2;(2)(a-b)2 分析:此例是典型的整式求值问题,若按常规思维把a、b的值分别求出来,非常困难;仔细探究易把这些条件同完全平方公式结合起来,运用完全平方公式的变形式很容易找到解决问题的途径。即:(1)a2+b2=(a+b)2-2ab=… (2)(a-b)2=(a+b)2-4ab=… 3、公式的逆用: 例7:计算: 分析:本题若直接运用乘法公式和法则较繁琐,仔细分析可发现其结构恰似完全平方公式的右边,不妨把公式倒过来用可得:==4 (a+b)(a-b)=a^2-b^2 两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式。 [编辑本段]说明 当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差,即a^-b^ =(a+b)(a-b) 两数和於这两数差的基,等於它们的平方差。 [逆推导平方差公式] a^2-b^2 =a^2-b^2+(ab-ab) =(a^2-ab)+(ab-b^2) =a(a-b)+b(a-b) =(a+b)(a-b) [编辑本段]公式运用 [解方程] x×x-y×y=1991 [思路分析] 利用平方差公式求解 [解题过程] x^2-y^2=1991 (x+y)(x-y)=1991 因为1991可以分成1×1991,11×181 所以如果x+y=1991,x-y=1,解得x=996,y=995 如果x+y=181,x-y=11,x=96,y=85同时也可以是负数 所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995 或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85 供参考!江苏吴云超祝你学习进步

6,给我一篇整式乘法的教案

整式的乘法公式教案课题: 完全平方公式 教学目标 ①经历探索完全平方公式的过程,使学生感受从一般到特殊的研究方法,进一步发展符号感和推理能力.②会推导完全平方公式,能说出公式的结构特征,并能运用公式进行简单计算.③了解公式的几何背景,进一步培养学生用数形结合的方法解决问题的能力.教学重点 (a±b)2=a2±2ab+b2的推导及应用.教学难点 公式的结构特征及教科书P184例5.教学准备 投影仪;多媒体课件;小黑板.边长为a、b的两种正方形卡片每小组一张;长为a、宽为b的长方形卡片每小组一张.教学过程(师生活动) 设计理念引入 同学们,前一节课我们已经探究了一种特殊形式的多项式乘法,学会了平方差公式的一些简单应用.今天我们在这个基础上要继续学习另一种特殊形式的多项式乘法.下面请同学们像上一节课一样,自己来探究下面的问题: 。在推导公式的过程中,要重视学生对运算依据的理解与叙述,强调推理,培养他们的代数推理能力、用数学语言进行表达的能力。探究 计算下列各式,你能发现它们的运算形式与结果有什么规律吗? (1)(p+1)2=(p+1)(p+1)=_____ (2)(m+2)2=_____ (3)(p-1)2=(p-1)(p-1)=_____ (4)(m-2)2=_____ 引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括. 举例:再举几个这样的运算例子.让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报。 (2)这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的特征,便于进一步应用公式计算。验证 我们再来计算(a+b)2,(a-b)2. 公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例—归纳—猜想—验证一用数学符号表示. 概括 完全平方公式及其形式特征. 教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因。 还可以引导学生将(a-b)2的结果用(a+b)2来解释:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2 (3)对公式(a-b)2=a2-2ab+b2的多角度解释,是为了加深学生对公式中字母a、b的广泛意义的理解,并再次让学生体会加、减法的互相转化与统一。应用 教科书第182页例3 运用完全平方公式计算: (1)(4m+n)2 (2)(y-12)2 引导学生用如下的填空形式完成例3:解:(1)∵(4m+n)2是____与____和的平方, 可由学生口答完成,教师多媒体展示结果,提高课堂效率。 (1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解. (2)在具体计算时,当二项式的项不再是单独的数或字母时,或者项是小数时,往往容易出现运算错误.教科 教科书第183页例4 运用完全平方公式计算: (1)1022 (2)992 此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性. 运用完全平方公式进行数的简便运算的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,教学时可让学生自己独立解决此问题。解释 (1)现有下图所示三种规格的卡片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义: (2)你能根据下图(教科书第182页图15.3—3)说明(a-b)2=a2-2ab十b2吗? 第(1)小题由小组合作共同完成拼图游戏,比一比哪个小组快?第(2)小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2。 (1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.(2)此处将教科书的图15.3-2改为由学生自主拼图得到公式,是因为前一节课学生已初次接触了这样的数与形结合解释公式的思想方法,利用这个拼图游戏,可进一步促使学生关注几何与代数的联系,增进学生的认知和对公式的记忆 (3)教科书的图15.3-3比较难读懂,可引导学生合作交流得出代数恒等式。思考 (a+b)2与(-a-b)2相等吗?(a-b)2与(b-a)2相等吗?(a-b)2与a2-b2相等吗?为什么? 组织学生进行讨论,通过自主推导,互相合作交流,共同解决难题. 拓展 教科书第184,页例5 运用乘法公式计算, (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2 讲解此例之前可先让学生自学教科书第183页的“添括号法则”并完成教科书第184页练习1.然后给出例5的题目,让学生思考该选择哪个公式.第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a、b对照,其中-2y+3=-(2y-3),故应运用平方差公式.第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式。 在解此例的过程中,应注意边辨析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点。 (1)“添括号法则”采用自学的方法得出,可培养学生一定的自学能力。 (2)有些整式相乘需要先作适当变形,然后再用公式,在此可通过解题思路的分析,注意公式中字母的广泛意义,并渗透换元的思想。其中第二小题的结果特征明显,可作为一个新的乘法公式。小结 谈一谈:你对完全平方公式有了哪一些认识?它与平方差公式有什么区别和联系? 梳理知识,形成体系。作业 1. 必做题:教科书第185页习题15.3第二大题的(1)、(3)、(4)、(5);第三大题的(2);第四大题. 书本上有关完全平方公式的习题量较多,层次也比较明显, 设计思想 本节课是在学习了《平方差公式》之后进行的,学习的方法与上节课类似,但本课时中的内容多,难点也较多;所以对课堂教学的组织要求就更高.所以在设计活动时,我紧紧围绕着“完全平方公式如何得到和应用”这一中心问题展开,并根据活动情况不断地变换问题,以问题为核心调动学生参与活动的兴趣与积极性,在每一个教学环节都对学生提出丁不同的要求,使知识层层深入,环环紧扣.
整式的乘法同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式:(a十b)(a一b)=a2-b2(a±b)2=a2±2ab+b2(a±b)(a2±ab+b2)=a3±b3具体要求:(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。
文章TAG:整式乘法教案数学整式的乘法教案

最近更新

  • 中秋祭月,中秋节又叫中秋祭月

    中秋节又称中秋节、中秋节、八月节、追月节、拜月节、女儿节或团圆节,是中国汉字文化圈多个民族和国家流行的传统文化节日,农历八月十五,Yes中秋Festival,又称中秋节、月光生日、 ......

    和田地区 日期:2023-05-06

  • 鹅掌风病,鹅掌风得了这病怎么治疗

    鹅掌风得了这病怎么治疗1、对症治疗。,2、药物治疗(达克宁霜,新脚气膏)。2,鹅掌风手癣怎么不去用粗手脚裂洗剂啊,好多人都在用,你可以试试啊,我的牛皮癣是服用邵小征医生的中药给治愈 ......

    和田地区 日期:2023-05-06

  • 语言学习网站,选择适合自己的英文学习网站会考通过考试

    除了自身学习能力和努力之外,最重要的因素是找到一个好老师,我一开始就自学这个,学会了通过考试,但是,影响学习效果的因素很多,现在学口语的学生很多网站,但是每个人的性格和喜好都不一样 ......

    和田地区 日期:2023-05-06

  • 卫生委员竞选稿,竞选卫生委员演讲稿

    竞选卫生委员演讲稿1.我这次竞选的是我自信我能胜任这一职。“做事要脚踏实地,一步一个脚印的去做。”这是小时候父母常对我说的一句话,我是一个做事十分认真踏实的人,任何事不做则已,做则 ......

    和田地区 日期:2023-05-06

  • 安静地英语,安静地用英文怎么说

    安静地用英文怎么说2,安静地单词怎么写1,安静地用英文怎么说quietly安静地为你解答,如有帮助请采纳,如对本题有疑问可追问,Goodluck!2,安静地单词怎么写朋友,英语里至 ......

    和田地区 日期:2023-05-06

  • 新生儿脐炎,预防新生儿脐炎需注意哪些事项?

    6.脐带脱落后,如脐窝处仍有分泌物,可用1.5碘酒涂抹脐窝,每日两次,新生儿在脐带脱落前,不要把孩子放在盆里洗澡,最好用搓澡的方式,因为浸泡脐带会延缓脱落,容易导致感染,3.新生儿 ......

    和田地区 日期:2023-05-06

  • 截图按什么快捷键,手机截屏的快捷键是什么

    手机截屏的快捷键是什么安卓机可以试试音量-键+电源键苹果是home+电源键电源键+音量减键同时按住3秒!苹果手机的截屏快捷键是同时长按:“home键+电源键”安卓手机的截屏快捷键是 ......

    和田地区 日期:2023-05-05

  • 电脑内存在哪里看,怎么看电脑的内存

    本文目录一览1,怎么看电脑的内存2,怎么查看电脑运行内存3,怎么查看电脑内存4,如何查看电脑内存5,电脑的内存在那看1,怎么看电脑的内存找到电脑图标右键属性。{0}2,怎么查看电脑 ......

    和田地区 日期:2023-05-05