首页 > 天津 > 和平区 > 正棱锥的性质,正棱柱正棱锥 的所有性质高二数学

正棱锥的性质,正棱柱正棱锥 的所有性质高二数学

来源:整理 时间:2023-03-12 09:02:27 编辑:好学习 手机版

1,正棱柱正棱锥 的所有性质高二数学

正棱锥性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫侧高)也相等。②正棱锥的高、斜高、斜高在底面的射影(底面的内切圆的半径)、侧棱、侧棱在底面的射影(底面的外接圆的半径)、底面的半边长可组成四个直角三角形。
连结bd 正四棱锥s-abcd的侧棱为10cm,斜高为8cm; 也就是sb=10cm,se=8cm,且 f 是bd中点; 根据勾股定理 be=6cm; 正四棱锥的侧面是等腰三角形,所以 e 是 bc 中点,bc = 2 be = 12cm; 正四棱锥的底面是正方形,所以 bf = (1/2)bd = 6(根号2); 在三角形sbf中在用一次勾股定理 sf = 2(根号7)

正棱柱正棱锥 的所有性质高二数学

2,正棱柱正棱锥 的所有性质 感激不尽

正棱锥性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫侧高)也相等.②正棱锥的高、斜高、斜高在底面的射影(底面的内切圆的半径)、侧棱、侧棱在底面的射影(底面的外接圆的半径)、底面的半边长可组成四个直角三角形.

正棱柱正棱锥 的所有性质 感激不尽

3,正四棱锥的性质

1、正四棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);2、正四棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;3、正四棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等。扩展资料:公式体积公式:hs^3表面积公式:s(4h^2+s^2)^(1/2)+s^2侧面面积公式:s(4h^2+s^2)^(1/2)底面积公式:s^2其中h=高,s=底面边长。要注意的是体积算法:正四棱锥的高,以正方形中心到顶点的距离来算。
正四棱锥:四个侧面都是等腰三角形,是特殊的四棱锥;顶点在底面的射影是正方形的中心,各侧面和各侧棱与底面的二面角和夹角相等。
(1)正四棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);(2)正四棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;(3)正四棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;(4)正四棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h,那么它的侧面积是 s=1/2ch。

正四棱锥的性质

4,什么叫正棱锥

问题一:正棱锥定义 10分 1、正棱锥的定义: 正棱锥: 如果一个棱锥的底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。如下图: 2、正棱锥的性质: 1)各侧棱相等,各侧面都是全等的等腰三角形;户 2)棱锥的高、斜高、斜高在底面内的射影组成一个直角三角形; 3)棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。问题二:正棱锥的正棱锥的性质 (1)正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);(2)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;(3)正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;(4)正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h,那么它的侧面积是 s=1/2ch。(5)正棱锥的体积:如果正棱锥的底面积为S,顶点到底面的距离为h,则V=1/3Sh 问题三:什么叫正六棱锥 就是底面是正六边形,顶点过顶点的垂线在底面的几何中心上的棱锥。

5,棱柱直棱柱正棱柱棱锥正棱锥球体 的性质

棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)过棱柱不相邻的两条侧棱的截面都是平行四边形。 4)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。 正棱柱:底面是正多边形的直棱柱叫做正棱柱。 ============================================================= 1.棱锥截面性质定理及推论 定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。 推论1:如果棱锥被平行与底面的平面所截,则棱锥的侧棱和高被截面分成的线段比相等。 推论2:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知原棱锥的侧面积之比也等于它们对应高的平方比;截得的棱锥与已知棱锥的侧面积之比也等于它们的底面积之比。 2.一些特殊棱锥的性质 侧棱长都相等的棱锥,它的顶点在底面内的射影是底面多边形的外接圆的圆心(外心),同时侧棱与底面所成的角都相等。 侧面与底面的交角都相等的棱锥,它的二面角都是锐二面角,所以顶点在底面内的射影在底多边形的内部,并且它到各边的距离相等即为底多边形的内切圆的圆心(内心),且各侧面上的斜高相等。如果侧面与底面所成角为α,则有S底=S侧cosα。如图画出了射影是外心和内心的情况。 3.棱锥的侧面积及全面积、体积公式 棱锥的侧面积及全面积 棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积,则 S棱锥侧=S1+S2+…+Sn(其中Si,i=1,2…n为第i个侧面的面积) S全=S棱锥侧+S底 棱锥的体积 棱锥和圆锥统称锥体,锥体的体积公式是: v=1/3sh(s为锥体的底面积,h为锥体的高)。 斜棱锥的侧面积=各侧的面积之和 正棱锥的侧面积:S正棱锥侧=1/2chˊ(c为底面周长,hˊ为斜高)。 棱锥的中截面面积:S中截面=1/4S底面 ==================================================== 4.正棱锥有下面一些性质 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高); 正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。 正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等。 正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h,那么它的侧面积是 s=1/2ch ================================= 用一个平面去截一个球,截面是圆面。球的截面有以下性质: 1 球心和截面圆心的连线垂直于截面。 2 球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2
棱柱(魔方),圆柱(干电池),棱锥(金字塔是四棱锥的,物理光学试验中的三棱镜,打磨成型的钻石上部也是棱锥型的),圆锥(漏斗),球体(篮球、足球)

6,正方形菱形矩形锥体柱体的性质

【正方形】1、边:两组对边分别平行;四条边都相等;相邻边互相垂直2、内角:四个角都是90°;3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。5、 正方形具有平行四边形、菱形、矩形的一切性质。6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%; 正方形外接圆面积大约是正方形面积的157%。8、正方形是特殊的长方形【菱形】1、对角线互相垂直且平分,并且每条对角线平分一组对角;2、四条边都相等;3、对角相等,邻角互补;4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的根号三倍。6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。【矩形】1、矩形的4个内角都是直角;2、矩形的对角线相等且互相平分;3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。5.矩形具有平行四边形的所有性质6.顺次连接矩形各边中点得到的四边形是菱形【圆锥】圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。圆锥侧面展开是一个扇形,已知扇形面积为二分之一rl。所以圆锥侧面积为二分之一母线长×长(即底面周长)。另 外,母线长等于底面圆直径的圆锥,展开的扇形就是半圆。所有圆锥展开的扇形角度等于(底面直径÷母线)×180度。【棱锥】1.棱锥截面性质定理及推论定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。推论1:如果棱锥被平行与底面的平面所截,则棱锥的侧棱和高被截面分成的线段比相等。推论2:如果棱锥被平行于底面的平面所截,则截得的小棱锥与原棱锥的侧面积之比也等于它们对应高的平方比,或它们的底面积之比。2.一些特殊棱锥的性质侧棱长都相等的棱锥,它的顶点在底面内的射影是底面多边形的外接圆的圆心(外心),同时侧棱与底面所成的角都相等。侧面与底面的交角都相等的棱锥,它的二面角都是锐二面角,所以顶点在底面内的射影在底多边形的内部,并且它到各边的距离相等即为底多边形的内切圆的圆心(内心),且各侧面上的斜高相等。如果侧面与底面所成角为α,则有S底=S侧cosα。如图画出了射影是外心和内心的情况。3.棱锥的侧面积及全面积、体积公式棱锥的侧面积及全面积棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积,则S棱锥侧=S1+S2+…+Sn(其中Si,i=1,2…n为第i个侧面的面积)S全=S棱锥侧+S底棱锥的体积棱锥和圆锥统称锥体,锥体的体积公式是: v=1/3sh(s为锥体的底面积,h为锥体的高)。斜棱锥的侧面积=各侧的面积之和正棱锥的侧面积:S正棱锥侧=1/2chˊ(c为底面周长,hˊ为斜高)。棱锥的中截面面积:S中截面=1/4S底面4.正棱锥有下面一些性质正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等。正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h,那么它的侧面积是 s=1/2ch【柱体】1、棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。2、棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。3、过棱柱不相邻的两条侧棱的截面都是平行四边形。4、直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。你高二吧,给你个链接http://wenku.baidu.com/view/8fe0ead55022aaea998f0f5c.html?edu_search=true

7,正四面体和正三棱锥的区别是什么它们各有什么性质

正四面体和正三棱锥的区别:特点不同、意义不同、性质不同一、特点不同1、正四面体:由四个全等的正三角形所组成的几何体。2、正三棱锥:锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。二、意义不同1、正四面体:有四个面、四个顶点、六条棱。每个二面角均为70°32,有四个三面角,每个三面角的面角均为60°。2、正三棱锥:侧面展开图是由4个三角形组成的,展开图的面积,就是棱锥的侧面积,则 :(其中Si,i= 1,2为第i个侧面的面积)S全=S棱锥侧+S底S正三棱锥=1/2CL+S底V=1/3A(底面积)*h。三、性质不同1、正四面体:(1)正四面体的每一个面是正三角形,反之亦然。(2)正四面体是三组对棱都垂直的等面四面体。(3)正四面体是两组对棱垂直的等面四面体。(4)正四面体的各棱的中点是正八面体的六顶点。2、正三棱锥:(1) 底面是等边三角形。(2)侧面是三个全等的等腰三角形。(3) 顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。
正四面体是正三棱锥的特例,因此它属于正三棱锥。
一、特点不同1、正四面体:由四个全等的正三2、正三棱锥:锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。二、意义不同1、正四面体:有四个面、四个顶点、六条棱。每个二面角均为70°32,有四个三面角,每个三面角的面角均为60°。2、正三棱锥:侧面展开图是由4个三角形组成的,展开图的面积,就是棱锥的侧面积,则 :(其中Si,i= 1,2为第i个侧面的面积)S全=S棱锥侧+S底S正三棱锥=1/2CL+S底V=1/3A(底面积)*h。?三、性质不同1、正四面体:(1)正四面体的每一个面是正三角形,反之亦然。(2)正四面体是三组对棱都垂直的等面四面体。(3)正四面体是两组对棱垂直的等面四面体。(4)正四面体的各棱的中点是正八面体的六顶点。2、正三棱锥:(1) 底面是等边三角形。(2)侧面是三个全等的等腰三角形。(3) 顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。
正三棱锥是底面为正三角形,侧面为全等等腰三角形的空间体.正四面体是其中的特殊.正四面体是4个面都是等边三角形的空间体。  正四面体是一种柏拉图多面体,正四面体与自身对偶。  正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。  正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。  正四面体有四条三重旋转对称轴,六个对称面。  正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。  正四面体的对边相互垂直。  化学中CH4,CCl4,SiH4等物质也是正四面体结构,键角是109度28分,约为109.47°。  1. 底面是等边三角形。  2. 侧面是三个全等的等腰三角形。  3. 顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。  4. 常构造以下四个直角三角形(见图):  正三棱锥V-ABC  (1)斜高、侧棱、底边的一半构成的直角三角形;(含侧棱与底边夹角)  (2)高、斜高、斜高射影构成的直角三角形;(含侧面与底面夹角)  (3)高、侧棱、侧棱射影构成的直角三角形;(含侧棱与底面夹角)  (4)斜高射影、侧棱射影、底边的一半构成的直角三角形。
正四面体就是由四个全等正三角形围成的空间封闭图形.正三棱锥:底面是正三角形,其余各面是有一个公共顶点的三角形正四面体有6条棱,4个顶点。正四面体是最简单的正多面体。当其棱长为a时,其体积等于(√2/12)a^3,表面积等于√3*a^2。 正三棱锥具有性质:底面是正三角形 /3条棱相等 /对棱是异面垂直 /侧面积=母线*一条底边*3/2 /体积=高*底面积/3“正四面体”和“正三棱锥” 如图,这两个图形有什么区别?上图底面ΔABC是一个等边三角形,其他三个面也都是等边三角形,四个等边三角形都是全等的。右图的底面ΔA1B1C1是一个等边三角形,其他的三个面是全等的等腰三角形。 左图叫正四面体,右图叫正三棱锥。 什么叫正四面体? 为了定义正四面体,需要用到多面角的概念。 左图有两个特点: 第一,每个面都是全等的等边三角形; 第二,各个多面角都是全等的多面角(即以P、A、B、C为顶点的四个多面角可以互相重合)。 我们把这样的多面体叫做正四面体。 右图与左图不同,虽然ΔA1B1C1是等边三角形,但其他三个面P1A1B1、P1B1C1、P1C1A1都不是正三角形;虽然以A1、B1、C1为顶点的三个多面角是全等的,但以P1为顶点的多面角与它们并不全等,所以这四个多面角并不都全等。因而,右图虽有四个面,是四面体,但不是正四面体,它叫做正三棱锥。 我们给正三棱锥下定义:如果一个三棱锥底面是正三角形,并且顶点在底面内的射影是底面等边三角形的中心,这样的棱锥叫做正三棱锥。 由此可见,正四面体是正三棱锥,它的任何一个面都可以看成是正三棱锥的底,它是正三棱锥的特殊形式;但正棱锥就未必是正四面体。两者是特殊与一般的关系。
文章TAG:正棱锥的性质棱锥性质棱柱

最近更新