首页 > 广东 > 深圳市 > 2020深圳高三二模文科数学答案,一道高三文科数学

2020深圳高三二模文科数学答案,一道高三文科数学

来源:整理 时间:2023-04-25 06:44:22 编辑:深圳生活 手机版

本文目录一览

1,一道高三文科数学

答案:D本题不难 考查到的是函数图像的变换+函数性质函数f(x+4)是偶函数 说明 函数f(x)图像关于直线x=4对称又因为函数f(x)在(4,+无穷)上单调递减画出草图即得答案 魔数师唐 真诚希望对你有用!!

一道高三文科数学

2,一道高三文科数学题立体几何

底面周长C=3,则边长a=3÷6=0.5,所以正六边形的顶点到中心距离b=a=1/2已知六棱柱的高为根号3,所有六棱柱的地面离球心的距离d=根号3÷2=2分之1根号3球的半径r=根号(d的平方+b的平方)=根号(2分之1根号3的平方+1/2的平方)=根号2球的体积V=4πR3/3=后面这个答案难打,你自己懂得了的,没图,很难解释哦,都是手写的

一道高三文科数学题立体几何

3,高三数学函数例题及解析2

  高中数学函数知识点总结   一次函数   一、定义与定义式:   自变量x和因变量y有如下关系:   y=kx+b   则此时称y是x的一次函数。   特别地,当b=0时,y是x的正比例函数。   即:y=kx (k为常数,k≠0)   二、一次函数的性质:   1.y的变化值与对应的x的变化值成正比例,比值为k   即:y=kx+b (k为任意不为零的实数 b取任何实数)   2.当x=0时,b为函数在y轴上的截距。   三、一次函数的图像及性质:   1.作法与图形:通过如下3个步骤   (1)列表;   (2)描点;   (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)   2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。   3.k,b与函数图像所在象限:   当k>0时,直线必通过一、三象限,y随x的增大而增大;   当k<0时,直线必通过二、四象限,y随x的增大而减小。   当b>0时,直线必通过一、二象限;   当b=0时,直线通过原点   当b<0时,直线必通过三、四象限。   特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。   这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。   四、确定一次函数的表达式:   已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。   (1)设一次函数的表达式(也叫解析式)为y=kx+b。   (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②   (3)解这个二元一次方程,得到k,b的值。   (4)最后得到一次函数的表达式。   五、一次函数在生活中的应用:   1.当时间t一定,距离s是速度v的一次函数。s=vt。   2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。   六、常用公式:(不全,希望有人补充)   1.求函数图像的k值:(y1-y2)/(x1-x2)   2.求与x轴平行线段的中点:|x1-x2|/2   3.求与y轴平行线段的中点:|y1-y2|/2   4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)   二次函数   I.定义与定义表达式   一般地,自变量x和因变量y之间存在如下关系:   y=ax^2+bx+c   (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)   则称y为x的二次函数。   二次函数表达式的右边通常为二次三项式。   II.二次函数的三种表达式   一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)   顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]   交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]   注:在3种形式的互相转化中,有如下关系:   h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a   III.二次函数的图像   在平面直角坐标系中作出二次函数y=x^2的图像,   可以看出,二次函数的图像是一条抛物线。   IV.抛物线的性质   1.抛物线是轴对称图形。对称轴为直线   x = -b/2a。   对称轴与抛物线唯一的交点为抛物线的顶点P。   特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)   2.抛物线有一个顶点P,坐标为   P ( -b/2a ,(4ac-b^2)/4a )   当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。   3.二次项系数a决定抛物线的开口方向和大小。   当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。   |a|越大,则抛物线的开口越小。   4.一次项系数b和二次项系数a共同决定对称轴的位置。   当a与b同号时(即ab>0),对称轴在y轴左;   当a与b异号时(即ab<0),对称轴在y轴右。   5.常数项c决定抛物线与y轴交点。   抛物线与y轴交于(0,c)   6.抛物线与x轴交点个数   Δ= b^2-4ac>0时,抛物线与x轴有2个交点。   Δ= b^2-4ac=0时,抛物线与x轴有1个交点。   Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)   V.二次函数与一元二次方程   特别地,二次函数(以下称函数)y=ax^2+bx+c,   当y=0时,二次函数为关于x的一元二次方程(以下称方程),   即ax^2+bx+c=0   此时,函数图像与x轴有无交点即方程有无实数根。   函数与x轴交点的横坐标即为方程的根。   1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:   解析式 顶点坐标 对 称 轴   y=ax^2 (0,0) x=0   y=a(x-h)^2 (h,0) x=h   y=a(x-h)^2+k (h,k) x=h   y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a   当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,   当h<0时,则向左平行移动|h|个单位得到.   当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;   当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;   当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;   当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;   因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.   2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).   3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.   4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:   (1)图象与y轴一定相交,交点坐标为(0,c);   (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0   (a≠0)的两根.这两点间的距离AB=|x?-x?|   当△=0.图象与x轴只有一个交点;   当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.   5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.   顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.   6.用待定系数法求二次函数的解析式   (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:   y=ax^2+bx+c(a≠0).   (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).   (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).   7.二次函数知识很容易与 其它 知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的 热点 考题,往往以大题形式出现.   反比例函数   形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。   自变量x的取值范围是不等于0的一切实数。   反比例函数图像性质:   反比例函数的图像为双曲线。   由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。   另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。   如图,上面给出了k分别为正和负(2和-2)时的函数图像。   当K>0时,反比例函数图像经过一,三象限,是减函数   当K<0时,反比例函数图像经过二,四象限,是增函数   反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。   知识点:   1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。   2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)   对数函数   对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。   右图给出对于不同大小a所表示的函数图形:   可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。   (1)对数函数的定义域为大于0的实数集合。   (2)对数函数的值域为全部实数集合。   (3)函数总是通过(1,0)这点。   (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。   (5)显然对数函数无界。   指数函数   指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得   如图所示为a的不同大小影响函数图形的情况。   可以看到:   (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。   (2) 指数函数的值域为大于0的实数集合。   (3) 函数图形都是下凹的。   (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。   (7) 函数总是通过(0,1)这点。   (8) 显然指数函数无界。   奇偶性   注图:(1)为奇函数(2)为偶函数   1.定义   一般地,对于函数f(x)   (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。   (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。   (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。   (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。   说明:①奇、偶性是函数的整体性质,对整个定义域而言   ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。   (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)   ③判断或证明函数是否具有奇偶性的根据是定义   2.奇偶函数图像的特征:   定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。   f(x)为奇函数《==》f(x)的图像关于原点对称   点(x,y)→(-x,-y)   奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。   偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。   3. 奇偶函数运算   (1) . 两个偶函数相加所得的和为偶函数.   (2) . 两个奇函数相加所得的和为奇函数.   (3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.   (4) . 两个偶函数相乘所得的积为偶函数.   (5) . 两个奇函数相乘所得的积为偶函数.   (6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.   定义域   (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;   值域   名称定义   函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合   常用的求值域的方法   (1)化归法;(2)图象法(数形结合),   (3)函数单调性法,   (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等   关于函数值域误区   定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。   “范围”与“值域”相同吗?   “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。 猜你喜欢: 1. 高三数学函数例题及解析 2. 高三数学函数例题及解析 3. 高三数学函数专题训练题及答案 4. 高中文科数学函数试题及答案 5. 高中数学函数图象练习题及答案 6. 高三数学函数知识点梳理

高三数学函数例题及解析2

文章TAG:2020深圳高三二模2020深圳高三二模文科数学答案

最近更新